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LIMITS
INTUITION

Limit Intuition: Sometimes it is not possible to work out what the
value of a function is, it might be indeterminate. So instead we work
out the value as we get closer and closer but without actually being
’there’.

Example:

x2 −1

x −1
= undefined for x = 1 ⇒ but the limit lim

x→1

x2 −1

x −1
= 2 is defined

We can get f (x) as close to L ’as we want’ by getting x sufficiently
close to a.
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LIMITS

Ï Approach from the left/right: functions need checking the limit
from both sides to make sure it actually exists

• Approach from the left: limx→a− f (x)
• Approach from the right: limx→a+ f (x)

Ï Existence: A limit L exists if the limit from the left is the same
that the one from the right.

lim
x→a− f (x) = L = lim

x→a+ f (x) for a 6= ±∞

If the function is defined only over an interval, the extrema
points are only needed to check one of the sides.
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LIMITS

Example: Consider limx→0
x
|x|

Ï Approaching from the left limx→0− x
|x| =−1

Ï Approaching from the right limx→0+ x
|x| = 1

Since

lim
x→0−

x

|x| 6= lim
x→0+

x

|x|
the limit does not exist

−2 2

−2

2

x

y

limx→a
x
|x|
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LIMITS
PROPERTIES

Properties of limits: or limits of combined functions. Now define:

lim
x→c

f (x) = L and lim
x→c

g (x) = M

Then the properties are:

limx→c f (x)+ g (x) = limx→c f (x)+ limx→c g (x) = L+M
limx→c f (x)− g (x) = limx→c f (x)− limx→c g (x) = L−M
limx→c f (x) · g (x) = limx→c f (x) · limx→c g (x) = L ·M
limx→c f (x)/g (x) = limx→c f (x)/ limx→c g (x) = L/M

limx→c k f (x) = k limx→c f (x) = k ·L
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LIMITS

Exercise: consider the following two limits

lim
x→3

7x −6 = L and lim
x→0

5

x −1
= M

Work out L+M , L−M ,L ·M and L/M

Solution: First work out each limit individually:

L = lim
x→3

7x −6 = 15 and M = lim
x→0

5

x −1
=−5

Then perform the operations by just substituting the values

1. M +L = 15−5 = 10

2. M −L = 15+5 = 20

3. M ·L = 15 · (−5) =−75

4. M/L = 15/(−5) =−3
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LIMITS

Unbounded limits (vertical asymptotes): it is encountered when
the function f (x) approaches ∞ as x tends to a point:

lim
x→c

f (x) =±∞

But don’t be fooled by the "=". We cannot actually get to infinity,
but in "limit" language the limit is infinity (which is really saying the
function is limitless).
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LIMITS

Limits at infinity (Horizontal asymptotes): it is the limit of a
function as x approaches infinity.

lim
x→±∞ f (x) = c

It is not possible to say what 1
∞ is, but it is possible to work out what

happens when x gets larger, limx→∞ 1/x = 0

Examples:

Ï Rational

Ï Radical

Ï Trigonometric

Ï Difference
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LIMITS

Example: Consider the function f (x) = 1
x with vertical and

horizontal asymptotes.

Ï limx→0
1
x

lim
x→0−

1

x
=−∞

lim
x→0+

1

x
=∞

Ï limx→∞ 1
x = 0

−4 −2 2 4 6

−4

−2

2

4

x

y

limx→0±
1
x and limx→∞ 1

x = 0
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CONTINUITY
INTUITION

Continuity Intuition: a function f (x) is said to be continuous if we
can draw the whole function without lifting the pen.

Continuity Definition: a function f (x) is said to be continuous if
and only if

lim
x→a− f (x) = L = lim

x→a+ f (x)

and

f (x) = L

Rubén Pérez Sanz Calculus 13 / 102



CONTINUITY
INTUITION

Continuity Intuition: a function f (x) is said to be continuous if we
can draw the whole function without lifting the pen.

Continuity Definition: a function f (x) is said to be continuous if
and only if

lim
x→a− f (x) = L = lim

x→a+ f (x)

and

f (x) = L

Rubén Pérez Sanz Calculus 13 / 102



CONTINUITY
INTUITION

Example:

x2 −1

x −1
= undefined for x = 1

Then the function will not be continuous at x = 1

−4 −2 2 4 6

−4

−2

2

4

x

y

And the function is said to have a removable discontinuity.
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DERIVATIVES
INTUITION

The concept of the derivative is of special importance in economics.
It allow us to work out the rate of change of one variable with respect
to other.

Concepts like productivity, marginal cost or marginal utility are
direct applications of the concept of derivative.

Also, they will become quite handy when doing comparative statics.
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DERIVATIVES
INTUITION

But, what a derivative really is?

−4 −2 2 4 6

2

4

6

8
f (x) = x2

x

y

Derivative of x2 at (1,1)

Ï The slope of a function

Ï The tangent line

Ï Average rate of change
of y with respect to x

At a point
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DERIVATIVES
INTUITION

How to calculate the slope of the tangent at P = (x0, y0)

1. Choose a point P = (x0, y0)

2. Select a nearby point Q = (x1, y1)

3. Calculate the slope of the secant
line msec

msec = y1 − y0

x1 −x0

4. Take the limit as Q → P

y = x2

Tangent

Se
ca

nt

P = (x0 , y1 )

Q = (x1 , y1 )

x1 −x0

y1 − y0

x0 x1
x

y
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DERIVATIVES
INTUITION

Example: y = x2

Ï Choose P = (x0, y0)

Ï Select Q = (x1, y1)

Ï Calculate msec

msec = y1 − y0

x1 −x0
= x2

1 −x2
0

x1 −x0

Ï Take the limit

m = lim
P→Q

msec = lim
x1→x0

y1 − y0

x1 −x0

WARNING!!: at x1 = x0 the slope is not defined: msec = 0
0 , that’s why

we take the limit.
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DERIVATIVES
INTUITION

We must think of x1 as coming very close to x0 but remaining distinct
from it

Solving the limit:

lim
x1→x0

y1 − y0

x1 −x0
= lim

x1→x0

x2
1 −x2

0

x1 −x0
Remember that y = x2

= lim
x1→x0

(x1 +x0)(x1 −x0)

x1 −x0
Factor the expression

= lim
x1→x0

x1 +x0 Cancel out

= 2x0
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DERIVATIVES
DELTA NOTATION

Since our reference is x0, we prefer to take small changes like ∆x
close to the point than other nearby point like x1.

∆x = x1 − x0: is the change in x going form the first value to the
second or alternatively: x1 = x0 +∆x adding a small amount to the
first value.

Previous example: Re writing msec

msec =
x2

1 −x2
0

x1 −x0
= (x0 +∆x)2 −x2

0

∆x

x1 → x0 is equivalent to ∆x → 0
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DERIVATIVES
DELTA NOTATION

solving the numerator:

(x0 +∆x)2 −x0 =x2
0 +2x0∆x + (∆x)2 −x2

0 Expanding the binomial

=2x0∆x + (∆x)2 Cancelling terms

=∆x(2x0 +∆x) factorising

And msec becomes: msec = 2x0 +∆x, taking the limit:

m = lim
∆x→0

2x0 +∆x = 2x0
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DERIVATIVES
DEFINITION

Definition:

f ′(x) = lim
∆x→0

f (x +∆x)− f (x)

∆x

Procedure to compute derivatives:

1. write down the difference f (x +∆x)− f (x) and simplify it to the
point where ∆x is a factor

2. Divide by ∆x to form the difference quotient: f (x+∆x)− f (x)
∆x

3. Evaluate the limit of the difference quotient as ∆x → 0
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DERIVATIVES
DEFINITION

Example: y = x3

STEP 1: Operate the numerator till you factorise ∆x

f (x +∆x)− f (x) =(x +∆x)3 −x3

=x3 +3x2∆x +3x(∆x)2 + (∆x)3 −x3

=3x2∆x +3x(∆x)2 + (∆x)3

=∆x(3x2 +3x∆x + (∆x)2)

STEP 2: Divide by ∆x

f (x +∆x)− f (x)

∆x
= ∆x(3x2 +3x∆x + (∆x)2)

∆x
= 3x2 +3x∆x + (∆x)2

STEP 3: Evaluate the limit

f ′(x) = lim
∆x→0

3x2 +3x∆x + (∆x)2 = 3x2
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DERIVATIVES
NOTATION

All of these symbols are equivalent:

y ′ d y

d x
f ′(x)

d f (x)

d x

d

d x
f (x) Dx ( f (x))

Why the fractions?

d y

d x
= lim
∆x→0

∆y

∆x

To indicate at a point:

d y

d x

∣∣∣∣
x=x0
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DERIVATIVES
NOTATION

Why different notation? well...
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DERIVATIVES
COMPUTATION

CONSTANT: y = c

d

d x
c = 0

Proof:

d y

d x
= lim
∆x→0

f (x +∆x)− f (x)

∆x
= lim
∆x→0

c − c

∆x
= 0
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DERIVATIVES
COMPUTATION

POWER RULE: y = xn for n ∈Z,n 6= 0

d

d x
xn = nxn−1

Proof:

d y

d x
= lim

(∆x)→0

f (x +∆x)− f (x)

∆x
= lim
∆x→0

(x +∆x)n −xn

∆x
Substitute

= lim
∆x→0

(
xn +nxn−1∆x +·· ·+nx(∆x)n−1 + (∆x)n)−xn

∆x
Expand (x +∆x)n

= lim
∆x→0

nxn−1∆x + n(n−1)
2! xn−2(∆x)2 +·· ·+nx(∆x)n−1 + (∆x)n

∆x
Cancel terms

= lim
∆x→0

(
nxn−1 + n(n −1)

2!
xn−2∆x +·· ·+nx(∆x)n−2 + (∆x)n−1

)
Evaluate

= nxn−1
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d
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g (x)

∆x
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∆x→0

f (x +∆x) · g (x +∆x)− g (x)
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∆x→0

f (x +∆x)− f (x)

∆x
· g (x) Limit rules
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∆x→0

f (x +∆x)︸ ︷︷ ︸
f (x)
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∆x→0

g (x +∆x)− g (x)

∆x︸ ︷︷ ︸
g ′(x)

+ lim
∆x→0

f (x +∆x)− f (x)

∆x︸ ︷︷ ︸
f ′(x)

· lim
∆x→0

g (x)︸ ︷︷ ︸
g (x)

=

= f ′(x)g (x)+ f (x)g ′(x)
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f (x +∆x)g (x +∆x)− f (x +∆x)g (x)+ f (x +∆x)g (x)− f (x)g (x)

∆x
Add and subtract
f (x +∆x)g (x)

= lim
∆x→0

f (x +∆x)
[
g (x +∆x)− g (x)

]+ [
f (x +∆x)− f (x)

]
g (x)

∆x
Re arrange

= lim
∆x→0

f (x +∆x) · g (x +∆x)− g (x)

∆x
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f (x +∆x)− f (x)
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DERIVATIVES
COMPUTATION

CHAIN RULE: y = f
(
g (x)

)

d

d x
f
(
g (x)

)= d f (x)

d g (x)
· d g (x)

d x
= f ′(g (x)) · g ′(x)

Proof:
Notice that for a continuous function g (x) at a point:

as ∆x → 0 ⇒∆g (x) → 0

Then the result follows:

d f (g (x))

d x
= lim
∆x→0

∆ f

∆x
= lim
∆x→0

∆ f

∆g
· ∆g

∆x
= lim
∆g→0

∆ f

∆g
· lim
∆x→0

∆g

∆x
= d f

d g
· d g

d x
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DERIVATIVES
COMPUTATION

QUOTIENT RULE: y = f (x)
g (x)

d

d x

(
f (x)

g (x)

)
=

d
d x f (x) · g (x)− f (x) d

d x g (x)

g (x)2 = f ′(x)g (x)+ f (x)g ′(x)

g (x)2

Proof:

Notice that
f (x)

g (x)
= f (x) · g (x)−1

Apply the product rule, for the second term use the power rule for
g (x)−1 then apply the chain rule.
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DERIVATIVES
IMPLICIT DIFFERENTIATION

Up to now all the functions have been of the form y = f (x)

However, it is not always obvious which is the independent variable:
F (x, y) = 0

In these cases it is not straight forward what variable depends
on which, but we can just assume that it does and differentiate
implicitly.

Example: take x to be a function of y , such that x = g (y) and x ′ = d x
d y .

x2 + y2 = 25 Using implicit differentiation w.r.t. y

2x · x ′+2y = 0 Solving for x’

x ′ =− y

x
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DERIVATIVES
IMPLICIT DIFFERENTIATION

Also we can use Implicit differentiation on y = xn when n ∈ Q (we
have already proven it for n ∈Z).

Since n is a rational number we can put it in the form n = p
q . So now

we can write

y = x
p
q

And taking into account that y is a function of x all the way along,
the next two expressions are equivalent

y = x
p
q ⇔ y q = xp
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DERIVATIVES
IMPLICIT DIFFERENTIATION

Assuming y depends on x and using implicit differentiation on both
sides of y q = xp :

q y q−1 y ′ = pxp−1 By chain rule

⇔ y ′ = pxp−1

q y q−1 Solving fory ′

⇔ y ′ = pxp−1

q
(
x

p
q

)q−1 Substituting y = x
p
q

⇔ y ′ = pxp−1

qxp− p
q

Multiplying exponents

⇔ y ′ = p

q
xp−1−p+ p

q

⇔ y ′ = p

q
x

p
q −1 = nxn−1
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DERIVATIVES
COMPUTATION

EXPONENTIAL: y = ax

d y

d x
= ax ln a

Proof:
Using the definition of derivative:

d ax

d x
= lim
∆x→0

ax+∆x −ax

∆x
= lim
∆x→0

ax a∆x −1

∆x
= ax lim

∆x→0

a∆x −1

∆x︸ ︷︷ ︸
M(a)

= ax M(a)

Now let’s assume that ∃!a = e|M(e) = 1, Then:

d

d x
ex = ex M(e) = ex
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Using the definition of derivative:

d ax

d x
= lim
∆x→0

ax+∆x −ax

∆x
= lim
∆x→0

ax a∆x −1
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= ax lim

∆x→0

a∆x −1

∆x︸ ︷︷ ︸
M(a)

= ax M(a)

Now let’s assume that ∃!a = e|M(e) = 1, Then:

d

d x
ex = ex M(e) = ex

Rubén Pérez Sanz Calculus 37 / 102



DERIVATIVES
COMPUTATION

LOGARITHM: y = ln x

d y

d x
= 1

x

Proof:
Remember that y = ln x ⇐⇒ e y = x, so:

e y · y ′ = 1 Differentiating implicitly

y ′ = 1

e y Solving for y’

y ′ = 1

e lnx
Substituting y = ln x

y ′ = 1

x
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DERIVATIVES
COMPUTATION

EXPONETIALS: WHACHT OUT!!! we derived d
d x ex but what about

the more general form d
d x ax ?

Proof (continuation):
Rewrite a as e l na then:

ax = e l nax = exlna

d

d x
ax = l na exlna Differentiating implicitly

d

d x
ax = l na

(
e l na

)x
Re arranging

d

d x
ax = ax l na Undoing the change

And notice that then M(a) = lna

The proof for the l oga x in any base a is identical to the ln x
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DERIVATIVES
APPLICATIONS

INCREASE: What means for a function to be increasing?

Let f (x) be on an interval I , and a,b two points
such that a < b, then a function is said to be
increasing if

a < b ⇒ f (a) < f (b)

Take a point x = x0, One application of the
derivative is that if

f ′(x0) > 0 ⇒ f (x0) is increasing

at that point

a b

f (a)

f (b)

x

y

DECREASE:
if a < b ⇒ f (a) > f (b)

if f ′(x0) < 0 ⇒ f (x0) is decreasing at that point
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DERIVATIVES
APPLICATIONS

REMARK: the direction does not go in the other way, i.e.

f (x0) increasing ; f ′(x0) > 0

at that point

f (x) = x3

x

y

The derivative f ′(0) = 0 but the function is increasing at that point.
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DERIVATIVES
APPLICATIONS

MAXIMUM/MINIMUM: Where does the function attains its local
maxima and minima?

if f ′(x0) = 0 ⇒ f (x0) is a critical point

WHACHT OUT!!! f ′(x0) = 0 does not mean that we are in a maximum
or a minimum at x0. I could be an inflection point
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DERIVATIVES
APPLICATIONS

CONCAVITY AND POINTS OF INFLECTION: In what direction does
the curve of the function bends?

Ï If f ′′(x0) > 0 ⇒
• f (x0) is Concave-up
• If in addition f ′(x0) = 0 ⇒ attains

a minimum

Ï If f ′′(x0) < 0 ⇒
• f (x0) is Concave-down
• If in addition f ′(x0) = 0 ⇒ attains

a maximum

Ï If f ′′(x0) = 0 ⇒ f (x0) could
be max, min or an inflection
point

Rubén Pérez Sanz Calculus 43 / 102



DERIVATIVES
APPLICATIONS

CONCAVITY AND POINTS OF INFLECTION: In what direction does
the curve of the function bends?

Ï If f ′′(x0) > 0 ⇒
• f (x0) is Concave-up
• If in addition f ′(x0) = 0 ⇒ attains

a minimum

Ï If f ′′(x0) < 0 ⇒
• f (x0) is Concave-down
• If in addition f ′(x0) = 0 ⇒ attains

a maximum

Ï If f ′′(x0) = 0 ⇒ f (x0) could
be max, min or an inflection
point

Rubén Pérez Sanz Calculus 43 / 102



DERIVATIVES
APPLICATIONS

CONCAVITY AND POINTS OF INFLECTION: In what direction does
the curve of the function bends?

Ï If f ′′(x0) > 0 ⇒
• f (x0) is Concave-up

• If in addition f ′(x0) = 0 ⇒ attains
a minimum

Ï If f ′′(x0) < 0 ⇒
• f (x0) is Concave-down
• If in addition f ′(x0) = 0 ⇒ attains

a maximum

Ï If f ′′(x0) = 0 ⇒ f (x0) could
be max, min or an inflection
point

Rubén Pérez Sanz Calculus 43 / 102



DERIVATIVES
APPLICATIONS

CONCAVITY AND POINTS OF INFLECTION: In what direction does
the curve of the function bends?

Ï If f ′′(x0) > 0 ⇒
• f (x0) is Concave-up
• If in addition f ′(x0) = 0 ⇒ attains

a minimum

Ï If f ′′(x0) < 0 ⇒
• f (x0) is Concave-down
• If in addition f ′(x0) = 0 ⇒ attains

a maximum

Ï If f ′′(x0) = 0 ⇒ f (x0) could
be max, min or an inflection
point

Rubén Pérez Sanz Calculus 43 / 102



DERIVATIVES
APPLICATIONS

CONCAVITY AND POINTS OF INFLECTION: In what direction does
the curve of the function bends?

Ï If f ′′(x0) > 0 ⇒
• f (x0) is Concave-up
• If in addition f ′(x0) = 0 ⇒ attains

a minimum

Ï If f ′′(x0) < 0 ⇒
• f (x0) is Concave-down

• If in addition f ′(x0) = 0 ⇒ attains
a maximum

Ï If f ′′(x0) = 0 ⇒ f (x0) could
be max, min or an inflection
point

Rubén Pérez Sanz Calculus 43 / 102



DERIVATIVES
APPLICATIONS

CONCAVITY AND POINTS OF INFLECTION: In what direction does
the curve of the function bends?

Ï If f ′′(x0) > 0 ⇒
• f (x0) is Concave-up
• If in addition f ′(x0) = 0 ⇒ attains

a minimum

Ï If f ′′(x0) < 0 ⇒
• f (x0) is Concave-down
• If in addition f ′(x0) = 0 ⇒ attains

a maximum

Ï If f ′′(x0) = 0 ⇒ f (x0) could
be max, min or an inflection
point

Rubén Pérez Sanz Calculus 43 / 102



DERIVATIVES
APPLICATIONS

CONCAVITY AND POINTS OF INFLECTION: In what direction does
the curve of the function bends?

Ï If f ′′(x0) > 0 ⇒
• f (x0) is Concave-up
• If in addition f ′(x0) = 0 ⇒ attains

a minimum

Ï If f ′′(x0) < 0 ⇒
• f (x0) is Concave-down
• If in addition f ′(x0) = 0 ⇒ attains

a maximum

Ï If f ′′(x0) = 0 ⇒ f (x0) could
be max, min or an inflection
point

Rubén Pérez Sanz Calculus 43 / 102



DERIVATIVES
APPLICATTIONS

APPROXIMATIONS:

f (x +d x) ≈ f (x)+ f ′(x) {(x +d x)−x} , for x ≈ x +d x

Play with this example to see how good an approximation can get as
we get very near to the point.

Rubén Pérez Sanz Calculus 44 / 102

https://www.desmos.com/calculator/jrfp1kmhyo


DERIVATIVES
APPLICATTIONS

APPROXIMATIONS:

f (x +d x) ≈ f (x)+ f ′(x) {(x +d x)−x} , for x ≈ x +d x

Play with this example to see how good an approximation can get as
we get very near to the point.

Rubén Pérez Sanz Calculus 44 / 102

https://www.desmos.com/calculator/jrfp1kmhyo


DERIVATIVES
APPLICATTIONS

APPROXIMATIONS:

f (x +d x) ≈ f (x)+ f ′(x) {(x +d x)−x} , for x ≈ x +d x

Play with this example to see how good an approximation can get as
we get very near to the point.

Rubén Pérez Sanz Calculus 44 / 102

https://www.desmos.com/calculator/jrfp1kmhyo


DERIVATIVES
APPLICATIONS

L’HOSPITAL’S RULE:
Theorem: If f (x) and g (x) are both equal to zero at x = a and have
derivatives there, then

lim
x→a

f (x)

g (x)
= f ′(a)

g ′(a)

provided that g ′(a) 6= 0.

Proof:since f (a) = 0 and g (a) = 0 we can write

lim
x→a

f (x)

g (x)
= lim

x→a

f (x)− f (a)

g (x)− g (a)

= lim
x→a

(
f (x)− f (a)

)
/(x −a)(

g (x)− g (a)
)

/(x −a)
= f ′(a)

g ′(a)
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DERIVATIVES
APPLICATTIONS

L’HOSPITAL’S RULE:

Example:

lim
x→2

3x2 −7x +2

x2 +5x −14
= 0

0
Factorising

lim
x→2

(x −2)(3x −1)

(x −2)(x +7)
= 5

9

Or using L’Hospital’s rule:

lim
x→2

3x2 −7x +2

x2 +5x −14
= 0

0
L’H’s rule

lim
x→2

6x −7

2x +5
= 5

9
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INTEGRALS
INTUITION

In the previous chapters we worked with the problem of tangents
or finding the slope of a function at a point. We had to ’find the
derivative’.

Now, we are endowed with the inverse problem, having the
derivative we want to know what is the original function, or in other
words we want to find the antiderivative.

Another important concept is that of finding the area under the
curve, which is called the process of integration.

As you have probably seen in your degree, integrals have plenty
of applications like calculate the consumer surplus, work out the
lifetime utility or derive the income distribution.

Rubén Pérez Sanz Calculus 48 / 102



INTEGRALS
INTUITION

In the previous chapters we worked with the problem of tangents
or finding the slope of a function at a point. We had to ’find the
derivative’.

Now, we are endowed with the inverse problem, having the
derivative we want to know what is the original function, or in other
words we want to find the antiderivative.

Another important concept is that of finding the area under the
curve, which is called the process of integration.

As you have probably seen in your degree, integrals have plenty
of applications like calculate the consumer surplus, work out the
lifetime utility or derive the income distribution.

Rubén Pérez Sanz Calculus 48 / 102



INTEGRALS
INTUITION

In the previous chapters we worked with the problem of tangents
or finding the slope of a function at a point. We had to ’find the
derivative’.

Now, we are endowed with the inverse problem, having the
derivative we want to know what is the original function, or in other
words we want to find the antiderivative.

Another important concept is that of finding the area under the
curve, which is called the process of integration.

As you have probably seen in your degree, integrals have plenty
of applications like calculate the consumer surplus, work out the
lifetime utility or derive the income distribution.

Rubén Pérez Sanz Calculus 48 / 102



INTEGRALS
INTUITION

In the previous chapters we worked with the problem of tangents
or finding the slope of a function at a point. We had to ’find the
derivative’.

Now, we are endowed with the inverse problem, having the
derivative we want to know what is the original function, or in other
words we want to find the antiderivative.

Another important concept is that of finding the area under the
curve, which is called the process of integration.

As you have probably seen in your degree, integrals have plenty
of applications like calculate the consumer surplus, work out the
lifetime utility or derive the income distribution.

Rubén Pérez Sanz Calculus 48 / 102



INTEGRALS
INTUITION

For our purposes it will be handy to introduce a ’new’ notation of
differentials.
We defined the slope as

m = ∆y

∆x
so ∆y = m∆x

If we work on increments on the straight line, we take the
differential counterpart, then

∆y = d y,∆x = d xand tuhsd y = m d x
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INTEGRALS
INTUITION

Now consider the function y = f (x)

The differential d x is any
increment of x, (∆x).

And the differential d y
is any increment of y
along the tangent line (see
picture)

This will allow us to work
with differential as if they
were quotients.

P Q

R

S

d y

∆y

x0 x0 +∆x

d x =∆x

x

y
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INTEGRALS
INTUITION

ANTIDERIVATIVE: it is another name for indefinite integral.

They can be thought of the reverse operation of the derivative of F (x)

F ′(x) = f (x) ⇐⇒ F (x) =
∫

f (x)d x

By the very operation of the derivative, constants disappear. At the
time of integration we have to take them back. So

∫
f (x)d x = F (x)+C
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INTEGRALS
INTUITION

Example:

f (x) = 3x2 ⇐⇒ F (x) = x3 +C

C

x

y
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INTEGRALS
INTUITION

AREA: Definite Integrals can be thought of as the area under the
curve

WHACHT OUT!!! Indefinite and definite integrals are two
completely different objects, they must not be confused.
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INTEGRALS
RIEMAN SUMS

It is difficult to measure the area under a curve, but we can
approximate it using rectangles

Area ≈
n∑

i=1
f (x∗

i )∆xi

Of course, there is going to be some error, that can be avoided doing
the intervals "as small as possible"

Area = lim
n→∞

n∑
i=1

f (x∗
i )
∆x

n
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INTEGRALS
FUNDAMENTAL THEOREM OF CALCULUS II

FUNDAMENTAL THEOREM OF CALCULUS II: Let f (x) be a
continuous non-negative function in a close interval [a,b]. Then:

F (x) =
∫ x

a
f (t ) d t or F ′(x) = f (x)

PROOF:

∆F = F (x +∆x)−F (x) =
∫ x+∆x

x
f (t )d t ≈ f (x)∆x

y = f (x)

a b
x

y

y = f (x)

a x

f (x)

∆x

F (x)

x

y
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INTEGRALS
FUNDAMENTAL THEOREM OF CALCULUS II

PROOF:

∆F = F (x +∆x)−F (x) =
∫ x+∆x

x
f (t )d t ≈ f (x)∆x

Then:

∆F (x) ≈ f (x)∆x ⇐⇒ ∆F (x)

∆x
≈ f (x)

Taking the limit as ∆x → 0

lim
∆x→0

∆F (x)

∆x
= f (x) ⇐⇒ F ′(x) = f (x)
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INTEGRALS
FUNDAMENTAL THEOREM OF CALCULUS I

FUNDAMENTAL THEOREM OF CALCULUS I: Let f (x) be a
continuous non-negative function in a close interval [a,b]. Then:

∫ b

a
f (t ) d t = F (b)−F (a)

PROOF: Since integration give us not only a function but a family of
them, we can define:

G(x) =
∫ x

a
f (t ) d t

byF TC I I=⇒ G ′(x) = f (x)

since G ′(x) = f (x) = F ′(x), we have (G(x)−F (x))′ = 0
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INTEGRALS
FUNDAMENTAL THEOREM OF CALCULUS I

PROOF:

then G(x)−F (x) =C

To evaluate C, we evaluate at x = a , since G(a) = 0:

C =−F (a)

Then evaluate the function G(x) at x = b and use the value of C
above:

G(b) = F (b)−F (a) ⇐⇒
∫ b

a
f (t ) d t = F (b)−F (a)
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INTEGRALS
PROPERTIES

INDEFINITE AND DEFINITE INTEGRALS:

∫
c f (x) d x = c

∫
f (x) d x

∫ [
f (x)+ g (x)

]
d x =

∫
f (x)d x +

∫
g (x) d x
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INTEGRALS
PROPERTIES

DEFINITE INTEGRALS:∫ b

a
f (x) d x =−

∫ a

b
f (x) d x∫ a

a
f (x) d x = 0∫ b

a
f (x) d x =

∫ c

a
f (x) d x +

∫ b

c
f (x) d x
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INTEGRALS
PROPERTIES

DEFINITE INTEGRALS:

d

d x

∫ x

a
f (t )d t = f (x) and

d

d x

∫ b

x
f (t )d t =− f (x)

if f (x) ≥ g (x),∀x ∈ [a,b] ⇒
∫ b

a
f (x)d x ≥

∫ b

a
g (x)d x

if f (x) ≤ 0,∀x ∈ [a,b] ⇒
∫ b

a
f (x)d x ≤ 0∣∣∣∣∫ b

a
f (x) d x

∣∣∣∣≤ ∫ b

a

∣∣ f (x)
∣∣d x
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INTEGRALS
COMPUTATION

ANTIDERIVATIVE: Some integrals are easy to work out because they
are just the opposite operation of the derivative.

∫ b

a
ex d x = ex]b

a + c
∫ b

a

1

x
d x = lnx]b

a + c∫ b

a
sin x d x = −cos x]b

a + c
∫ b

a
cos x d x = sin x]b

a + c∫ b

a
xn d x = xn+1

n +1

]b

a
+ c
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INTEGRALS
COMPUTATION

SUBSTITUTION: Let F (x) be a non-negative and differentiable
function and g (x) a differentiable function in a close interval [a,b].
Furthermore let y = F (g (x)), then by the chain rule:

y ′ = dF
(
g (x)

)
d x

= F ′ (g (x)
)

g ′(x) = f
(
g (x)

)
g ′(x)

Integrating:

y =
∫ b

a
y ′d x =

∫ b

a
f
(
g (x)

)
g ′(x)d x

Rubén Pérez Sanz Calculus 63 / 102



INTEGRALS
COMPUTATION

SUBSTITUTION: Let F (x) be a non-negative and differentiable
function and g (x) a differentiable function in a close interval [a,b].
Furthermore let y = F (g (x)), then by the chain rule:

y ′ = dF
(
g (x)

)
d x

= F ′ (g (x)
)

g ′(x) = f
(
g (x)

)
g ′(x)

Integrating:

y =
∫ b

a
y ′d x =

∫ b

a
f
(
g (x)

)
g ′(x)d x

Rubén Pérez Sanz Calculus 63 / 102



INTEGRALS
COMPUTATION

SUBSTITUTION: Let F (x) be a non-negative and differentiable
function and g (x) a differentiable function in a close interval [a,b].
Furthermore let y = F (g (x)), then by the chain rule:

y ′ = dF
(
g (x)

)
d x

= F ′ (g (x)
)

g ′(x) = f
(
g (x)

)
g ′(x)

Integrating:

y =
∫ b

a
y ′d x =

∫ b

a
f
(
g (x)

)
g ′(x)d x

Rubén Pérez Sanz Calculus 63 / 102



INTEGRALS
COMPUTATION

Now let:

u = g (x) and

du = g ′(x)d x

Substituting these values into the integrand:

y =
∫ b

a
y ′d x =

∫ b

a
f

(
g (x)︸︷︷︸

)
=u

g ′(x)d x︸ ︷︷ ︸
=du

=
∫ g (b)

g (a)
f (u)du

= F (u)]
g (b)
g (a) = F (g (x))

]b
a +C
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INTEGRALS
COMPUTATION

Example:

f (x) = ln x

x

F (x) =
∫ 2

1

ln x

x
d x =

∫ 2

1
ln x · 1

x
d x

Now let:

u = ln x and du = 1

x
d x

u(1) = ln1 = 0 and u(2) = ln2

Substituting:

F (x) =
∫ 2

1
ln x

1

x
d x =

∫ u(2)

u(1)
u du = u2

2

]ln2

0
= 1

2
(ln x)2

]2

1
+C
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INTEGRALS
COMPUTATION

BY PARTS: Let f (x) and g (x) be two non-negative and differentiable
functions close interval [a,b]. Furthermore let y = f (x)g (x), then by
the product rule:

y ′ = d

d x
f (x)g (x) = f ′(x)g (x)+ f (x)g ′(x)

Integrating:∫ b

a

d

d x
f (x)g (x)d x =

∫ b

a
f ′(x)g (x)d x +

∫ b

a
f (x)g ′(x)d x
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INTEGRALS
COMPUTATION

By the FTC II:

f (x)g (x)
]b

a =
∫ b

a
f ′(x)g (x)d x +

∫ b

a
f (x)g ′(x)d x

Solving for
∫

f (x)g ′(x)d x:∫ b

a
f (x)g ′(x)d x = f (x)g (x)

]b
a −

∫ b

a
f ′(x)g (x)d x

INTUITION: the main objective is to make f (x) into something
simpler, whilst letting g (x) to remain in something similar or not
more complicated.
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INTEGRALS
COMPUTATION

Example: find the integral of the function f (x) = x2ex in the interval
[0,1]

F (x) = x2ex d x

Now let:

f (x) = x2 and g ′(x) = ex then:

f ′(x) = 2x and g (x) = ex

Integrating by parts:∫ 1

0
x2ex d x = x2ex]1

0 −
∫ 1

0
2xex d x = x2ex]1

0 − 2xex]1
0 +2

∫ 1

0
ex d x

= (
x2 −2x +2

)
ex]1

0 = e −2
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INTEGRALS
OTHER TYPES

IMPROPER INTEGRALS: are integrals of the form:∫ ∞

a
f (x)d x = lim

b→∞

∫ b

a
f (x)d x

In which one (or both) of the limits of integration is infinite and
the integrand f (x) is assumed to be continuous on the unbounded
interval a ≤ x <∞.
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INTEGRALS
OTHER TYPES

IMPROPER INTEGRALS: are integrals of the form:

∫ b

a
f (x)d x = lim

t→b

∫ b

a
f (x)d x

In which f (x) becomes infinite as x
approaches b

Rubén Pérez Sanz Calculus 70 / 102



INTEGRALS
OTHER TYPES

IMPROPER INTEGRALS: can be:

Ï Convergent: if the improper integral tends to a finite number

Ï Divergent: if the improper integral tends to infinity

Examples: convergent integrals∫ ∞

0
e−x d x =−[

e−x]∞
0 =− lim

b→∞
[
e−x]b

0 =−0+1 = 1+C∫ 1

0
x− 1

2 d x = 2
[

x
1
2

]1

0
= 2[1−0] = 2+C
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INTEGRALS
OTHER TYPES

Examples: divergent integrals∫ ∞

0

1

x
d x = ln x]∞1 = ln∞− ln1 =∞−0 =∞∫ 1

0
x−2d x =−

[
1

x

]1

0
=−1+ lim

x→0+
1

x
=−1+∞=∞
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POWER SERIES

POWER SERIES: they are series of the form:

f (x) =
∞∑

n=0
an xn = a0 +a1x +a2x2 +a3x3 + ...

where the coefficients of an are constants and x is a variable. Notice
that power series are themselves functions ( f (x))

Example:

∑
xn = 1+x +x2 +x3 + ... = 1

1−x
forx < |1|
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POWER SERIES

As well as polynomials, that are finite, power series share some
interesting characteristics. It can be said that within the radius of
convergence:

Ï Power series are continuous

Ï Are differentiable

Ï Are integrable
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POWER SERIES
TAYLOR’S RULE

TAYLOR POWER SERIES: we have seen that power series are
functions in their own right, some of them with a close form
solution, such as:

∑
xn = 1

1−x .

We would like to know if when we encounter a function, it can be
expressed in terms of a power series.

It turns out that it is possible to do so within the radius of
convergence.

Look at the gif of ln(1+x) for some intuition

Rubén Pérez Sanz Calculus 76 / 102
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POWER SERIES
TAYLOR’S RULE

Assume we have any f (x) and we would like to write in the form of a
power series, i.e.

f (x) = a0 +a1x +a2x2 +a3x3 + ...

From this expression we can take infinitely many derivatives:

f ′(x) = a1 +2a2x +3a3x2 + ...

f ′′(x) = 2a2 +3 ·2a3x +4 ·3a4x2...

...

f n(x) = n!an +Terms containing x as a factor
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POWER SERIES
TAYLOR’S RULE

Now notice that at x = 0, the terms that share x as a factor cancel, so

f (x) = a0 +a1x +a2x2 +a3x3 + ...
at x=0−→ f (0) = a0 ⇒ a0 = f (0)

f ′(x) = a1 +2a2x +3a3x2 +4a3
4... f ′(0) = a1 ⇒ a1 = f ′(0)

f ′′(x) = 2a2 +3 ·2a3x +4 ·3a4x2... f ′′(0) = 2a2 ⇒ a2 = 1

2
f ′′(0)

f 3(x) = 3 ·2a3 +4 ·3 ·2a4x + ... f 3(0) = 3!a3 ⇒ a3 = 1

3!
f ′′(0)

...

f n(x) = n!an +Terms containing x f n(0) = n!an ⇒ an = 1

n!
f n(0)
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POWER SERIES
TAYLOR’S RULE

Substituting back into the original equation:

f (x) = f (0)+ f ′(0)x + f ′′(0)

2
x2 + f 3(0)

3!
x3 + ...+ f n(0)

n!
xn + ...

=
∞∑

n=0

f n(0)

n!
xn
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POWER SERIES
TAYLOR’S RULE

Example: take ln(1+x)

We would like to expand ln(1+x) = a0 + a1x + a2x2 + a3x3 + ..., but
write it in sum notation, then

f (0) = ln1 = 0 ⇒ a0 = 0

f ′(0) = 1

1+x

∣∣∣∣
x=0

= 1 ⇒ a1 = 1

f ′′(0) = −1

(1+x)2

∣∣∣∣
x=0

=−1 ⇒ a2 =−1

2

f 3(0) = −2

(1+x)3

∣∣∣∣
x=0

=−2 ⇒ a3 = 1

3

.........................

f n(0) = (−1)n−1 (n −1)!

(1+x)n

∣∣∣∣
x=0

= (−1)n−1(n −1)! ⇒ an = (−1)n−1 1

n
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POWER SERIES
TAYLOR’S RULE

Example: ln(1+x)
Substituting back into Taylor’s formula:

ln(1+x) = x − x2

2
+ x3

3
− ...+ (−1)n xn+1

n +1

=
∞∑

n=1
(−1)n+1 xn

n

Look at the gif for ln(1+x)
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MULTIVARIATE CALCULUS
INTRODUCTION

Many functions do not depend only on one variable but in an
undefined number of them, e.g.:

z = f (x, y)

Is a function that depends only on x and y . Of course a function
might have any number of variables:

z = f (x) = f (x1, x2, ..., xn)

This specific arrange of variables is called a vector. As such, we can
define bold x as this vector, hence:

x = (x1, x2, ..., xn)
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MULTIVARIATE CALCULUS
DOMAIN

DOMAIN: the domain is all the points P = (x10 , x20 , ..., xn0 ) in the
n-dimensional space for which the function z = f (x) is defined

Example 1:

z = f (x, y) = 1

x − y

This function is not defined for all values where x = y

Example 2:

w = g (x) =
√

9−x2 − y2

This function is not define for all values where x2 + y2 ≥ 9
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MULTIVARIATE CALCULUS
LEVEL CURVES

LEVEL CURVE: is the reflected line over the x y-plane where the
function takes the same value:

z = f (x, y) = c

The collection of level curves is called the contour-map
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MULTIVARIATE CALCULUS
PARTIAL DERIVATIVES

PARTIAL DERIVATIVE: is the derivative of a multivariate function
w.r.t. one of its variables. The key idea is to allow one variable change
while keeping the rest constant:

∂z

∂x
= lim
∆x→0

f (x +∆x, y)− f (x, y)

∆x
= fx (x, y)

∂z

∂y
= lim
∆y→0

f (x, y +∆y)− f (x, y)

∆y
= fy (x, y)

And in general:

∂z

∂xi
= lim
∆xi→0

f (xi +∆xi ,x−i )− f (x)

∆xi
= fxi (x)

Where x−i are all other variables different from xi
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MULTIVARIATE CALCULUS
PARTIAL DERIVATIVES

Example:

f (x, y) = x4 +3x2 y3 − ln(2x2 y)

fx = 4x3 +6x y3 − 2

x

fy = 9x2 y2 − 1

y

NOTATION: ∂z
∂x this limit (if it exist) is the partial derivative of z w.r.t.

x. The most common notations are:

∂z

∂x
, zx ,

∂ f

∂x
, fx , fx (x, y)
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MULTIVARIATE CALCULUS
PARTIAL DERIVATIVES

As with functions of one variable, multivariate functions are
functions on their own right and we can expect to have second order
partial derivatives w.r.t. x:

∂

∂x

(
∂ f

∂x

)
= ∂2 f

∂x2 = fxx
∂

∂y

(
∂ f

∂x

)
= ∂2 f

∂x∂y
= fy x

∂

∂x

(
∂ f

∂y

)
= ∂2 f

∂y∂x
= fx y

∂

∂y

(
∂ f

∂y

)
= ∂2 f

∂y2 = fy y

More interestingly, usually fx y = fy x

Example:

fx = 4x3 +6x y3 − 2

x
fy x = 18x y2

fy = 9x2 y2 − 1

y
fx y = 18x y2
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∂

∂x

(
∂ f

∂x

)
= ∂2 f

∂x2 = fxx
∂

∂y

(
∂ f

∂x

)
= ∂2 f

∂x∂y
= fy x

∂

∂x

(
∂ f

∂y

)
= ∂2 f

∂y∂x
= fx y

∂

∂y

(
∂ f

∂y

)
= ∂2 f

∂y2 = fy y

More interestingly, usually fx y = fy x

Example:

fx = 4x3 +6x y3 − 2

x
fy x = 18x y2

fy = 9x2 y2 − 1

y
fx y = 18x y2

Rubén Pérez Sanz Calculus 88 / 102



MULTIVARIATE CALCULUS
PARTIAL DERIVATIVES

As with functions of one variable, multivariate functions are
functions on their own right and we can expect to have second order
partial derivatives w.r.t. x:

∂

∂x

(
∂ f

∂x

)
= ∂2 f

∂x2 = fxx
∂

∂y

(
∂ f

∂x

)
= ∂2 f

∂x∂y
= fy x

∂

∂x

(
∂ f

∂y

)
= ∂2 f

∂y∂x
= fx y

∂

∂y

(
∂ f

∂y

)
= ∂2 f

∂y2 = fy y

More interestingly, usually fx y = fy x

Example:

fx = 4x3 +6x y3 − 2

x
fy x = 18x y2

fy = 9x2 y2 − 1

y
fx y = 18x y2

Rubén Pérez Sanz Calculus 88 / 102



MULTIVARIATE CALCULUS
TANGENT PLANE

TANGENT PLANE: The
concept of tangent plane
to a surface corresponds to the
concept of tangent line to a
curve. So the tangent plane of
a surface at a point is the plane
that "best approximates" the
surface at that point. Figure: Tangent plane

Tangent line Tangent plane

m(x −x0)+ (y − y0) = 0 a(x −x0)+b(y − y0)+ (z − z0) = 0

f ′(x0)(x −x0)+ (
f (x)− f (x0)

)= 0 fx (x −x0)+ fy (y − y0)+ (
f (x, y)− f (x0, y0)

)= 0
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IMPLICIT FUNCTION THEOREM
CHAIN RULE

Let w = f (x, y) be a differentiable function in a closed interval. Let
also x = g (t ) and y = h(t ) be continuous functions in the same
interval. Then

∂w

∂t
= ∂w

∂x

∂x

∂t
+ ∂w

∂y

∂y

∂t

And in general for w = f (x):

∂ f (x)

∂t
= ∂ f (x)

∂x1

∂x1

∂t
+ ...+ ∂ f (x)

∂xn

∂xn

∂t
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IMPLICIT FUNCTION THEOREM
THEOREM

THEOREM: Let F (x, y) have continuous partial derivatives
throughout some neighbourhood of a point (x0, y0), assume
also that F (x0, y0) = c and Fy (x0, y0) 6= 0. Then there is an interval I
about x0 with the property that there exists exactly one differentiable
function y = f (x) defined on I such that y0 = f (x0) and:

F
[
x, f (x)

]= c

Further, the derivative of this function is given by the formula

d y

d x
=−Fx

Fy

and is therefore continuous.
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IMPLICIT FUNCTION THEOREM
THEOREM

Proof: for the second statement

Differentiate F
[
x, f (x)

]= c w.r.t x using the chain rule

∂F
[
x, f (x)

]
∂x

= Fx +Fy
∂y

∂x
= 0

Solving for ∂y
∂x the result follows

d y

d x
=−Fx

Fy
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IMPLICIT FUNCTION THEOREM
THEOREM

Example: consider F (x, y) = x2 y5 −2x y +1 = 0

Taking the partial derivatives

Fx (x, y) = 2x y5 −2y

Fy (x, y) = 5x2 y4 −2x

Then

∂y

∂x
=−Fx

Fy
=− 2x y5 −2y

5x2 y4 −2x
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CONVEX AND CONCAVE FUNCTIONS
INTUITION

CONCAVE FUNCTION: is
a function where no line
segment joining two points on
the graph lies above the graph
at any point.

0 2 4 6
0

2

4

Rubén Pérez Sanz Calculus 96 / 102



CONVEX AND CONCAVE FUNCTIONS
DEFINITION

DEFINITION: Let f (x) be a function defined on the interval I . Then
f (x) is said to be concave if ∀a,b ∈ I , and ∀λ ∈ [0,1] we have:

f ((1−λ)a +λb) ≥ (1−λ) f (a)+λ f (b)

a x∗ b

f (a)

(1−λ) f (a)+λ f (b)

f ((1−λ)a +λb)
f (b)

where x∗= (1−λ)a +λb
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CONVEX AND CONCAVE FUNCTIONS
INTUITION

CONVEX FUNCTION: is
a function where no line
segment joining two points on
the graph lies below the graph
at any point.

0 2 4 6
0

2

4

DEFINITION: Let f (x) be a function defined on the interval I . Then
f (x) is said to be convex if ∀a,b ∈ I , and ∀λ ∈ [0,1] we have:

f ((1−λ)a +λb) ≤ (1−λ) f (a)+λ f (b)
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CONVEX AND CONCAVE FUNCTIONS
JENSEN’S INEQUALITY

A function f (x) of a single variable defined on the interval I is
concave if and only if ∀n ≥ 2:

f (λ1x1 + ...+λn xn) ≥λ1 f (x1)+ ...+λn f (xn)

∀x1, ..., xn ∈ I and ∀λ1, ...,λn ≥ 0

∣∣∣∣∣ n∑
i=1

λi = 1

A function f (x) of a single variable defined on the interval I is convex
if and only if ∀n ≥ 2:

f (λ1x1 + ...+λn xn) ≤λ1 f (x1)+ ...+λn f (xn)

∀x1, ..., xn ∈ I and ∀λ1, ...,λn ≥ 0

∣∣∣∣∣ n∑
i=1

λi = 1
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CONVEX AND CONCAVE FUNCTIONS
DIFFERENTIABLE FUNCTIONS

DEFINITION: The differentiable function f (x) of a single variable
defined on an open interval I is concave on I if and only if:

f (x)− f (x∗) ≤ f ′(x∗)(x −x∗)

x∗ x

f (x∗)

f (x)

f′(x∗)(x−x∗)

INTUITION: The graph of the function f (x) lies below the the any
tangent line
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CONVEX AND CONCAVE FUNCTIONS
DIFFERENTIABLE FUNCTIONS

DEFINITION: The differentiable function f (x) of a single variable
defined on an open interval I is convex on I if and only if:

f (x)− f (x∗) ≥ f ′(x∗)(x −x∗)

INTUITION: The graph of the function f (x) lies above the the any
tangent line

Play with this graph
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CONVEX AND CONCAVE FUNCTIONS
TWICE-DIFFERENTIABLE FUNCTIONS

PROPOSITION: A twice-differentiable function f (x) of a single
variable defined on the interval I is:

Ï Concave: if and only if f ′′(x) ≤ 0 for all x in the interior of I

Ï Convex: if and only if f ′′(x) ≥ 0 for all x in the interior of I

INTUITION: For a concave (convex) function, the slope of the
tangent line to a point becomes lesser as we move along the x-axis
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