Calculus

Rubén Pérez Sanz ${ }^{1}$
Universitat Autònoma de Barcelona

September 22, 2020
${ }^{1}$ Based on the book of George F. Simons, Calculus with Analytic Geometry

Table of Contents

1. Limits
2. Continuity
3. Derivatives
4. Integrals
5. Power Series
6. Multivariate Calculus
7. Implicit Function Theorem
8. Convex and Concave Functions

Table of Contents

1. Limits
2. Continuity
3. Derivatives
4. Integrals
5. Power Series
6. Multivariate Calculus
7. Implicit Function Theorem
8. Convex and Concave Functions

LIMITS

INTUITION

Limit Intuition: Sometimes it is not possible to work out what the value of a function is, it might be indeterminate. So instead we work out the value as we get closer and closer but without actually being 'there'.

LIMITS

INTUITION

Limit Intuition: Sometimes it is not possible to work out what the value of a function is, it might be indeterminate. So instead we work out the value as we get closer and closer but without actually being 'there'.

Example:

$\frac{x^{2}-1}{x-1}=$ undefined for $x=1 \Rightarrow$ but the limit $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2$ is defined

LIMITS

INTUITION

Limit Intuition: Sometimes it is not possible to work out what the value of a function is, it might be indeterminate. So instead we work out the value as we get closer and closer but without actually being 'there'.

Example:

$\frac{x^{2}-1}{x-1}=$ undefined for $x=1 \Rightarrow$ but the limit $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2$ is defined

We can get $f(x)$ as close to L 'as we want' by getting x sufficiently close to a.

LIMITS

- Approach from the left/right: functions need checking the limit from both sides to make sure it actually exists
- Approach from the left: $\lim _{x \rightarrow a^{-}} f(x)$
- Approach from the right: $\lim _{x \rightarrow a^{+}} f(x)$

LIMITS

- Approach from the left/right: functions need checking the limit from both sides to make sure it actually exists
- Approach from the left: $\lim _{x \rightarrow a^{-}} f(x)$
- Approach from the right: $\lim _{x \rightarrow a^{+}} f(x)$
- Existence: A limit L exists if the limit from the left is the same that the one from the right.

$$
\lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x) \text { for } a \neq \pm \infty
$$

If the function is defined only over an interval, the extrema points are only needed to check one of the sides.

LIMITS

Example: Consider $\lim _{x \rightarrow 0} \frac{x}{|x|}$

LIMITS

Example: Consider $\lim _{x \rightarrow 0} \frac{x}{|x|}$

- Approaching from the left $\lim _{x \rightarrow 0^{-}} \frac{x}{|x|}=-1$

LIMITS

Example: Consider $\lim _{x \rightarrow 0} \frac{x}{|x|}$

- Approaching from the left $\lim _{x \rightarrow 0^{-}} \frac{x}{|x|}=-1$
- Approaching from the right $\lim _{x \rightarrow 0^{+}} \frac{x}{|x|}=1$

LIMITS

Example: Consider $\lim _{x \rightarrow 0} \frac{x}{|x|}$

- Approaching from the left $\lim _{x \rightarrow 0^{-}} \frac{x}{|x|}=-1$
- Approaching from the right $\lim _{x \rightarrow 0^{+}} \frac{x}{|x|}=1$

Since

$$
\lim _{x \rightarrow 0^{-}} \frac{x}{|x|} \neq \lim _{x \rightarrow 0^{+}} \frac{x}{|x|}
$$

the limit does not exist

LIMITS

Example: Consider $\lim _{x \rightarrow 0} \frac{x}{|x|}$

- Approaching from the left $\lim _{x \rightarrow 0^{-}} \frac{x}{|x|}=-1$
- Approaching from the right $\lim _{x \rightarrow 0^{+}} \frac{x}{|x|}=1$

Since

$$
\lim _{x \rightarrow 0^{-}} \frac{x}{|x|} \neq \lim _{x \rightarrow 0^{+}} \frac{x}{|x|}
$$

the limit does not exist

$\lim _{x \rightarrow a} \frac{x}{|x|}$

LIMITS

PROPERTIES

Properties of limits: or limits of combined functions. Now define:

$$
\lim _{x \rightarrow c} f(x)=L \text { and } \lim _{x \rightarrow c} g(x)=M
$$

LIMITS

PROPERTIES

Properties of limits: or limits of combined functions. Now define:

$$
\lim _{x \rightarrow c} f(x)=L \text { and } \lim _{x \rightarrow c} g(x)=M
$$

Then the properties are:

$$
\begin{aligned}
& \lim _{x \rightarrow c} f(x)+g(x)=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)=L+M \\
& \lim _{x \rightarrow c} f(x)-g(x)=\lim _{x \rightarrow c} f(x)-\lim _{x \rightarrow c} g(x)=L-M \\
& \lim _{x \rightarrow c} f(x) \cdot g(x)=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x)=L \cdot M \\
& \lim _{x \rightarrow c} f(x) / g(x)=\lim _{x \rightarrow c} f(x) / \lim _{x \rightarrow c} g(x)=L / M \\
& \lim _{x \rightarrow c} k f(x)=k \lim _{x \rightarrow c} f(x)=k \cdot L
\end{aligned}
$$

LIMITS

Exercise: consider the following two limits

$$
\lim _{x \rightarrow 3} 7 x-6=L \text { and } \lim _{x \rightarrow 0} \frac{5}{x-1}=M
$$

Work out $L+M, L-M, L \cdot M$ and L / M

LIMITS

Exercise: consider the following two limits

$$
\lim _{x \rightarrow 3} 7 x-6=L \text { and } \lim _{x \rightarrow 0} \frac{5}{x-1}=M
$$

Work out $L+M, L-M, L \cdot M$ and L / M
Solution: First work out each limit individually:

$$
L=\lim _{x \rightarrow 3} 7 x-6=15 \text { and } M=\lim _{x \rightarrow 0} \frac{5}{x-1}=-5
$$

LIMITS

Exercise: consider the following two limits

$$
\lim _{x \rightarrow 3} 7 x-6=L \text { and } \lim _{x \rightarrow 0} \frac{5}{x-1}=M
$$

Work out $L+M, L-M, L \cdot M$ and L / M
Solution: First work out each limit individually:

$$
L=\lim _{x \rightarrow 3} 7 x-6=15 \text { and } M=\lim _{x \rightarrow 0} \frac{5}{x-1}=-5
$$

Then perform the operations by just substituting the values

1. $M+L=15-5=10$
2. $M-L=15+5=20$
3. $M \cdot L=15 \cdot(-5)=-75$
4. $M / L=15 /(-5)=-3$

LIMITS

Unbounded limits (vertical asymptotes): it is encountered when the function $f(x)$ approaches ∞ as x tends to a point:

$$
\lim _{x \rightarrow c} f(x)= \pm \infty
$$

LIMITS

Unbounded limits (vertical asymptotes): it is encountered when the function $f(x)$ approaches ∞ as x tends to a point:

$$
\lim _{x \rightarrow c} f(x)= \pm \infty
$$

But don't be fooled by the "=". We cannot actually get to infinity, but in "limit" language the limit is infinity (which is really saying the function is limitless).

LIMITS

Limits at infinity (Horizontal asymptotes): it is the limit of a function as x approaches infinity.

$$
\lim _{x \rightarrow \pm \infty} f(x)=c
$$

LIMITS

Limits at infinity (Horizontal asymptotes): it is the limit of a function as x approaches infinity.

$$
\lim _{x \rightarrow \pm \infty} f(x)=c
$$

It is not possible to say what $\frac{1}{\infty}$ is, but it is possible to work out what happens when x gets larger, $\lim _{x \rightarrow \infty} 1 / x=0$

LIMITS

Limits at infinity (Horizontal asymptotes): it is the limit of a function as x approaches infinity.

$$
\lim _{x \rightarrow \pm \infty} f(x)=c
$$

It is not possible to say what $\frac{1}{\infty}$ is, but it is possible to work out what happens when x gets larger, $\lim _{x \rightarrow \infty} 1 / x=0$

Examples:

- Rational
- Radical
- Trigonometric
- Difference

LIMITS

Example: Consider the function $f(x)=\frac{1}{x}$ with vertical and horizontal asymptotes.

LIMITS

Example: Consider the function $f(x)=\frac{1}{x}$ with vertical and horizontal asymptotes.

- $\lim _{x \rightarrow 0} \frac{1}{x}$

LIMITS

Example: Consider the function $f(x)=\frac{1}{x}$ with vertical and horizontal asymptotes.

- $\lim _{x \rightarrow 0} \frac{1}{x}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty \\
& \lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty
\end{aligned}
$$

LIMITS

Example: Consider the function $f(x)=\frac{1}{x}$ with vertical and horizontal asymptotes.

- $\lim _{x \rightarrow 0} \frac{1}{x}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty \\
& \lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty
\end{aligned}
$$

- $\lim _{x \rightarrow \infty} \frac{1}{x}=0$

LIMITS

Example: Consider the function $f(x)=\frac{1}{x}$ with vertical and horizontal asymptotes.

- $\lim _{x \rightarrow 0} \frac{1}{x}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty \\
& \lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty
\end{aligned}
$$

- $\lim _{x \rightarrow \infty} \frac{1}{x}=0$

$\lim _{x \rightarrow 0^{ \pm}} \frac{1}{x}$ and $\lim _{x \rightarrow \infty} \frac{1}{x}=0$

Table of Contents

1. Limits

2. Continuity
3. Derivatives
4. Integrals
5. Power Series
6. Multivariate Calculus
7. Implicit Function Theorem
8. Convex and Concave Functions

CONTINUITY

INTUITION

Continuity Intuition: a function $f(x)$ is said to be continuous if we can draw the whole function without lifting the pen.

CONTINUITY

INTUITION

Continuity Intuition: a function $f(x)$ is said to be continuous if we can draw the whole function without lifting the pen.

Continuity Definition: a function $f(x)$ is said to be continuous if and only if

$$
\lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x)
$$

and

$$
f(x)=L
$$

CONTINUITY

INTUITION

Example:

$$
\frac{x^{2}-1}{x-1}=\text { undefined for } x=1
$$

Then the function will not be continuous at $x=1$

CONTINUITY

INTUITION

Example:

$$
\frac{x^{2}-1}{x-1}=\text { undefined for } x=1
$$

Then the function will not be continuous at $x=1$

CONTINUITY

INTUITION

Example:

$$
\frac{x^{2}-1}{x-1}=\text { undefined for } x=1
$$

Then the function will not be continuous at $x=1$

And the function is said to have a removable discontinuity.

Table of Contents

1. Limits

2. Continuity

3. Derivatives
4. Integrals
5. Power Series
6. Multivariate Calculus
7. Implicit Function Theorem
8. Convex and Concave Functions

DERIVATIVES

INTUITION

The concept of the derivative is of special importance in economics. It allow us to work out the rate of change of one variable with respect to other.

DERIVATIVES

INTUITION

The concept of the derivative is of special importance in economics. It allow us to work out the rate of change of one variable with respect to other.

Concepts like productivity, marginal cost or marginal utility are direct applications of the concept of derivative.

DERIVATIVES

INTUITION

The concept of the derivative is of special importance in economics. It allow us to work out the rate of change of one variable with respect to other.

Concepts like productivity, marginal cost or marginal utility are direct applications of the concept of derivative.

Also, they will become quite handy when doing comparative statics.

DERIVATIVES

INTUITION
But, what a derivative really is?

DERIVATIVES

INTUITION

But, what a derivative really is?

Derivative of x^{2} at $(1,1)$

DERIVATIVES

INTUITION

But, what a derivative really is?

- The slope of a function

Derivative of x^{2} at $(1,1)$

DERIVATIVES

INTUITION

But, what a derivative really is?

- The slope of a function
- The tangent line

Derivative of x^{2} at $(1,1)$

DERIVATIVES

INTUITION

But, what a derivative really is?

- The slope of a function
- The tangent line
- Average rate of change of y with respect to x

Derivative of x^{2} at $(1,1)$

DERIVATIVES

INTUITION

But, what a derivative really is?

- The slope of a function
- The tangent line
- Average rate of change of y with respect to x

At a point

Derivative of x^{2} at $(1,1)$

DERIVATIVES

INTUITION

How to calculate the slope of the tangent at $P=\left(x_{0}, y_{0}\right)$

DERIVATIVES

INTUITION

How to calculate the slope of the tangent at $P=\left(x_{0}, y_{0}\right)$

1. Choose a point $P=\left(x_{0}, y_{0}\right)$

DERIVATIVES

INTUITION

How to calculate the slope of the tangent at $P=\left(x_{0}, y_{0}\right)$

1. Choose a point $P=\left(x_{0}, y_{0}\right)$
2. Select a nearby point $Q=\left(x_{1}, y_{1}\right)$

DERIVATIVES

INTUITION

How to calculate the slope of the tangent at $P=\left(x_{0}, y_{0}\right)$

1. Choose a point $P=\left(x_{0}, y_{0}\right)$
2. Select a nearby point $Q=\left(x_{1}, y_{1}\right)$
3. Calculate the slope of the secant line $m_{s e c}$

$$
m_{s e c}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}
$$

DERIVATIVES

INTUITION

How to calculate the slope of the tangent at $P=\left(x_{0}, y_{0}\right)$

1. Choose a point $P=\left(x_{0}, y_{0}\right)$
2. Select a nearby point $Q=\left(x_{1}, y_{1}\right)$
3. Calculate the slope of the secant line $m_{s e c}$

$$
m_{s e c}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}
$$

4. Take the limit as $Q \rightarrow P$

DERIVATIVES

INTUITION

Example: $y=x^{2}$

DERIVATIVES

INTUITION
Example: $y=x^{2}$

- Choose $P=\left(x_{0}, y_{0}\right)$

DERIVATIVES

INTUITION
Example: $y=x^{2}$

- Choose $P=\left(x_{0}, y_{0}\right)$
- Select $Q=\left(x_{1}, y_{1}\right)$

DERIVATIVES

INTUITION

Example: $y=x^{2}$

- Choose $P=\left(x_{0}, y_{0}\right)$
- Select $Q=\left(x_{1}, y_{1}\right)$
- Calculate $m_{s e c}$

$$
m_{s e c}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{x_{1}^{2}-x_{0}^{2}}{x_{1}-x_{0}}
$$

DERIVATIVES

INTUITION

Example: $y=x^{2}$

- Choose $P=\left(x_{0}, y_{0}\right)$
- Select $Q=\left(x_{1}, y_{1}\right)$
- Calculate $m_{s e c}$

$$
m_{s e c}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{x_{1}^{2}-x_{0}^{2}}{x_{1}-x_{0}}
$$

- Take the limit

$$
m=\lim _{P \rightarrow Q} m_{\text {sec }}=\lim _{x_{1} \rightarrow x_{0}} \frac{y_{1}-y_{0}}{x_{1}-x_{0}}
$$

DERIVATIVES

INTUITION

Example: $y=x^{2}$

- Choose $P=\left(x_{0}, y_{0}\right)$
- Select $Q=\left(x_{1}, y_{1}\right)$
- Calculate $m_{s e c}$

$$
m_{s e c}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{x_{1}^{2}-x_{0}^{2}}{x_{1}-x_{0}}
$$

- Take the limit

$$
m=\lim _{P \rightarrow Q} m_{s e c}=\lim _{x_{1} \rightarrow x_{0}} \frac{y_{1}-y_{0}}{x_{1}-x_{0}}
$$

WARNING!!: at $x_{1}=x_{0}$ the slope is not defined: $m_{s e c}=\frac{0}{0}$, that's why we take the limit.

DERIVATIVES

INTUITION

We must think of x_{1} as coming very close to x_{0} but remaining distinct from it

DERIVATIVES

INTUITION

We must think of x_{1} as coming very close to x_{0} but remaining distinct from it

Solving the limit:

$$
\begin{aligned}
\lim _{x_{1} \rightarrow x_{0}} \frac{y_{1}-y_{0}}{x_{1}-x_{0}} & =\lim _{x_{1} \rightarrow x_{0}} \frac{x_{1}^{2}-x_{0}^{2}}{x_{1}-x_{0}} \\
& =\lim _{x_{1} \rightarrow x_{0}} \frac{\left(x_{1}+x_{0}\right)\left(x_{1}-x_{0}\right)}{x_{1}-x_{0}} \\
& =\lim _{x_{1} \rightarrow x_{0}} x_{1}+x_{0} \\
& =2 x_{0}
\end{aligned}
$$

Remember that $y=x^{2}$

Factor the expression
Cancel out

DERIVATIVES

DELTA NOTATION

Since our reference is x_{0}, we prefer to take small changes like Δx close to the point than other nearby point like x_{1}.

DERIVATIVES

DELTA NOTATION

Since our reference is x_{0}, we prefer to take small changes like Δx close to the point than other nearby point like x_{1}.
$\Delta x=x_{1}-x_{0}$: is the change in x going form the first value to the second or alternatively: $x_{1}=x_{0}+\Delta x$ adding a small amount to the first value.

DERIVATIVES

DELTA NOTATION

Since our reference is x_{0}, we prefer to take small changes like Δx close to the point than other nearby point like x_{1}.
$\Delta x=x_{1}-x_{0}$: is the change in x going form the first value to the second or alternatively: $x_{1}=x_{0}+\Delta x$ adding a small amount to the first value.

Previous example: Re writing $m_{\text {sec }}$

$$
m_{s e c}=\frac{x_{1}^{2}-x_{0}^{2}}{x_{1}-x_{0}}=\frac{\left(x_{0}+\Delta x\right)^{2}-x_{0}^{2}}{\Delta x}
$$

$x_{1} \rightarrow x_{0}$ is equivalent to $\Delta x \rightarrow 0$

DERIVATIVES

DELTA NOTATION
solving the numerator:

DERIVATIVES

DELTA NOTATION

solving the numerator:

$$
\left(x_{0}+\Delta x\right)^{2}-x_{0}=x_{0}^{2}+2 x_{0} \Delta x+(\Delta x)^{2}-x_{0}^{2} \quad \text { Expanding the binomial }
$$

DERIVATIVES

DELTA NOTATION

solving the numerator:

$$
\begin{array}{rlr}
\left(x_{0}+\Delta x\right)^{2}-x_{0} & =x_{0}^{2}+2 x_{0} \Delta x+(\Delta x)^{2}-x_{0}^{2} \quad \text { Expanding the binomial } \\
& =2 x_{0} \Delta x+(\Delta x)^{2} \quad \text { Cancelling terms }
\end{array}
$$

DERIVATIVES

DELTA NOTATION

solving the numerator:

$$
\begin{array}{rlr}
\left(x_{0}+\Delta x\right)^{2}-x_{0} & =x_{0}^{2}+2 x_{0} \Delta x+(\Delta x)^{2}-x_{0}^{2} & \text { Expanding the binomial } \\
& =2 x_{0} \Delta x+(\Delta x)^{2} & \text { Cancelling terms } \\
& =\Delta x\left(2 x_{0}+\Delta x\right) & \text { factorising }
\end{array}
$$

DERIVATIVES

DELTA NOTATION

solving the numerator:

$$
\begin{array}{rlr}
\left(x_{0}+\Delta x\right)^{2}-x_{0} & =x_{0}^{2}+2 x_{0} \Delta x+(\Delta x)^{2}-x_{0}^{2} \quad \text { Expanding the binomial } \\
& =2 x_{0} \Delta x+(\Delta x)^{2} & \text { Cancelling terms } \\
& =\Delta x\left(2 x_{0}+\Delta x\right) & \text { factorising }
\end{array}
$$

And $m_{s e c}$ becomes: $m_{s e c}=2 x_{0}+\Delta x$, taking the limit:

DERIVATIVES

DELTA NOTATION

solving the numerator:

$$
\begin{array}{rlr}
\left(x_{0}+\Delta x\right)^{2}-x_{0} & =x_{0}^{2}+2 x_{0} \Delta x+(\Delta x)^{2}-x_{0}^{2} \quad \text { Expanding the binomial } \\
& =2 x_{0} \Delta x+(\Delta x)^{2} & \text { Cancelling terms } \\
& =\Delta x\left(2 x_{0}+\Delta x\right) & \text { factorising }
\end{array}
$$

And $m_{s e c}$ becomes: $m_{s e c}=2 x_{0}+\Delta x$, taking the limit:

$$
m=\lim _{\Delta x \rightarrow 0} 2 x_{0}+\Delta x=2 x_{0}
$$

DERIVATIVES

DEFINITION

Definition:

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

DERIVATIVES

DEFINITION

Definition:

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Procedure to compute derivatives:

DERIVATIVES

DEFINITION

Definition:

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Procedure to compute derivatives:

1. write down the difference $f(x+\Delta x)-f(x)$ and simplify it to the point where Δx is a factor

DERIVATIVES

DEFINITION

Definition:

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Procedure to compute derivatives:

1. write down the difference $f(x+\Delta x)-f(x)$ and simplify it to the point where Δx is a factor
2. Divide by Δx to form the difference quotient: $\frac{f(x+\Delta x)-f(x)}{\Delta x}$

DERIVATIVES

DEFINITION

Definition:

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Procedure to compute derivatives:

1. write down the difference $f(x+\Delta x)-f(x)$ and simplify it to the point where Δx is a factor
2. Divide by Δx to form the difference quotient: $\frac{f(x+\Delta x)-f(x)}{\Delta x}$
3. Evaluate the limit of the difference quotient as $\Delta x \rightarrow 0$

DERIVATIVES

DEFINITION
Example: $y=x^{3}$

DERIVATIVES

DEFINITION

Example: $y=x^{3}$
STEP 1: Operate the numerator till you factorise Δx

DERIVATIVES

DEFINITION

Example: $y=x^{3}$
STEP 1: Operate the numerator till you factorise Δx

$$
f(x+\Delta x)-f(x)=(x+\Delta x)^{3}-x^{3}
$$

DERIVATIVES

DEFINITION

Example: $y=x^{3}$
STEP 1: Operate the numerator till you factorise Δx

$$
\begin{aligned}
f(x+\Delta x)-f(x) & =(x+\Delta x)^{3}-x^{3} \\
& =x^{3}+3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3}-x^{3}
\end{aligned}
$$

DERIVATIVES

DEFINITION

Example: $y=x^{3}$
STEP 1: Operate the numerator till you factorise Δx

$$
\begin{aligned}
f(x+\Delta x)-f(x) & =(x+\Delta x)^{3}-x^{3} \\
& =x^{3}+3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3}-x^{3} \\
& =3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3}
\end{aligned}
$$

DERIVATIVES

DEFINITION

Example: $y=x^{3}$
STEP 1: Operate the numerator till you factorise Δx

$$
\begin{aligned}
f(x+\Delta x)-f(x) & =(x+\Delta x)^{3}-x^{3} \\
& =x^{3}+3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3}-x^{3} \\
& =3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3} \\
& =\Delta x\left(3 x^{2}+3 x \Delta x+(\Delta x)^{2}\right)
\end{aligned}
$$

DERIVATIVES

DEFINITION

Example: $y=x^{3}$
STEP 1: Operate the numerator till you factorise Δx

$$
\begin{aligned}
f(x+\Delta x)-f(x) & =(x+\Delta x)^{3}-x^{3} \\
& =x^{3}+3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3}-x^{3} \\
& =3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3} \\
& =\Delta x\left(3 x^{2}+3 x \Delta x+(\Delta x)^{2}\right)
\end{aligned}
$$

STEP 2: Divide by Δx

DERIVATIVES

DEFINITION

Example: $y=x^{3}$
STEP 1: Operate the numerator till you factorise Δx

$$
\begin{aligned}
f(x+\Delta x)-f(x) & =(x+\Delta x)^{3}-x^{3} \\
& =x^{3}+3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3}-x^{3} \\
& =3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3} \\
& =\Delta x\left(3 x^{2}+3 x \Delta x+(\Delta x)^{2}\right)
\end{aligned}
$$

STEP 2: Divide by Δx

$$
\frac{f(x+\Delta x)-f(x)}{\Delta x}=\frac{\Delta x\left(3 x^{2}+3 x \Delta x+(\Delta x)^{2}\right)}{\Delta x}=3 x^{2}+3 x \Delta x+(\Delta x)^{2}
$$

DERIVATIVES

DEFINITION

Example: $y=x^{3}$
STEP 1: Operate the numerator till you factorise Δx

$$
\begin{aligned}
f(x+\Delta x)-f(x) & =(x+\Delta x)^{3}-x^{3} \\
& =x^{3}+3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3}-x^{3} \\
& =3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3} \\
& =\Delta x\left(3 x^{2}+3 x \Delta x+(\Delta x)^{2}\right)
\end{aligned}
$$

STEP 2: Divide by Δx

$$
\frac{f(x+\Delta x)-f(x)}{\Delta x}=\frac{\Delta x\left(3 x^{2}+3 x \Delta x+(\Delta x)^{2}\right)}{\Delta x}=3 x^{2}+3 x \Delta x+(\Delta x)^{2}
$$

STEP 3: Evaluate the limit

DERIVATIVES

DEFINITION

Example: $y=x^{3}$
STEP 1: Operate the numerator till you factorise Δx

$$
\begin{aligned}
f(x+\Delta x)-f(x) & =(x+\Delta x)^{3}-x^{3} \\
& =x^{3}+3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3}-x^{3} \\
& =3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3} \\
& =\Delta x\left(3 x^{2}+3 x \Delta x+(\Delta x)^{2}\right)
\end{aligned}
$$

STEP 2: Divide by Δx

$$
\frac{f(x+\Delta x)-f(x)}{\Delta x}=\frac{\Delta x\left(3 x^{2}+3 x \Delta x+(\Delta x)^{2}\right)}{\Delta x}=3 x^{2}+3 x \Delta x+(\Delta x)^{2}
$$

STEP 3: Evaluate the limit

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} 3 x^{2}+3 x \Delta x+(\Delta x)^{2}=3 x^{2}
$$

DERIVATIVES

NOTATION

All of these symbols are equivalent:

$$
y^{\prime} \quad \frac{d y}{d x} \quad f^{\prime}(x) \quad \frac{d f(x)}{d x} \quad \frac{d}{d x} f(x) \quad D_{x}(f(x))
$$

DERIVATIVES

NOTATION

All of these symbols are equivalent:

$$
y^{\prime} \quad \frac{d y}{d x} \quad f^{\prime}(x) \quad \frac{d f(x)}{d x} \quad \frac{d}{d x} f(x) \quad D_{x}(f(x))
$$

Why the fractions?

DERIVATIVES

NOTATION

All of these symbols are equivalent:

$$
y^{\prime} \quad \frac{d y}{d x} \quad f^{\prime}(x) \quad \frac{d f(x)}{d x} \quad \frac{d}{d x} f(x) \quad D_{x}(f(x))
$$

Why the fractions?

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}
$$

DERIVATIVES

NOTATION

All of these symbols are equivalent:

$$
y^{\prime} \quad \frac{d y}{d x} \quad f^{\prime}(x) \quad \frac{d f(x)}{d x} \quad \frac{d}{d x} f(x) \quad D_{x}(f(x))
$$

Why the fractions?

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}
$$

To indicate at a point:

DERIVATIVES

NOTATION

All of these symbols are equivalent:

$$
y^{\prime} \quad \frac{d y}{d x} \quad f^{\prime}(x) \quad \frac{d f(x)}{d x} \quad \frac{d}{d x} f(x) \quad D_{x}(f(x))
$$

Why the fractions?

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}
$$

To indicate at a point:

$$
\left.\frac{d y}{d x}\right|_{x=x_{0}}
$$

DERIVATIVES
 NOTATION

Why different notation? well...

DERIVATIVES
 NOTATION

Why different notation? well...

DERIVATIVES

COMPUTATION

CONSTANT: $y=c$

DERIVATIVES

COMPUTATION

CONSTANT: $y=c$

$$
\frac{d}{d x} c=0
$$

DERIVATIVES

COMPUTATION

CONSTANT: $y=c$

$$
\frac{d}{d x} c=0
$$

Proof:

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{c-c}{\Delta x}=0
$$

DERIVATIVES

COMPUTATION

POWER RULE: $y=x^{n}$ for $n \in \mathbb{Z}, n \neq 0$

DERIVATIVES

COMPUTATION

POWER RULE: $y=x^{n}$ for $n \in \mathbb{Z}, n \neq 0$

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

DERIVATIVES

COMPUTATION

POWER RULE: $y=x^{n}$ for $n \in \mathbb{Z}, n \neq 0$

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

Proof:

$$
\frac{d y}{d x}=\lim _{(\Delta x) \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{n}-x^{n}}{\Delta x}
$$

DERIVATIVES

COMPUTATION

POWER RULE: $y=x^{n}$ for $n \in \mathbb{Z}, n \neq 0$

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

Proof:

$$
\frac{d y}{d x}=\lim _{(\Delta x) \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{n}-x^{n}}{\Delta x}
$$

$$
=\lim _{\Delta x \rightarrow 0} \frac{\left(x^{n}+n x^{n-1} \Delta x+\cdots+n x(\Delta x)^{n-1}+(\Delta x)^{n}\right)-x^{n}}{\Delta x}
$$

DERIVATIVES

COMPUTATION

POWER RULE: $y=x^{n}$ for $n \in \mathbb{Z}, n \neq 0$

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

Proof:

$$
\frac{d y}{d x}=\lim _{(\Delta x) \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{n}-x^{n}}{\Delta x}
$$

$$
=\lim _{\Delta x \rightarrow 0} \frac{\left(x^{n}+n x^{n-1} \Delta x+\cdots+n x(\Delta x)^{n-1}+(\Delta x)^{n}\right)-x^{n}}{\Delta x}
$$

$$
=\lim _{\Delta x \rightarrow 0} \frac{n x^{n-1} \Delta x+\frac{n(n-1)}{2!} x^{n-2}(\Delta x)^{2}+\cdots+n x(\Delta x)^{n-1}+(\Delta x)^{n}}{\Delta x}
$$

DERIVATIVES

COMPUTATION

POWER RULE: $y=x^{n}$ for $n \in \mathbb{Z}, n \neq 0$

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

Proof:

$$
\frac{d y}{d x}=\lim _{(\Delta x) \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{n}-x^{n}}{\Delta x}
$$

$$
=\lim _{\Delta x \rightarrow 0} \frac{\left(x^{n}+n x^{n-1} \Delta x+\cdots+n x(\Delta x)^{n-1}+(\Delta x)^{n}\right)-x^{n}}{\Delta x}
$$

$$
=\lim _{\Delta x \rightarrow 0} \frac{n x^{n-1} \Delta x+\frac{n(n-1)}{2!} x^{n-2}(\Delta x)^{2}+\cdots+n x(\Delta x)^{n-1}+(\Delta x)^{n}}{\Delta x}
$$

$$
=\lim _{\Delta x \rightarrow 0}\left(n x^{n-1}+\frac{n(n-1)}{2!} x^{n-2} \Delta x+\cdots+n x(\Delta x)^{n-2}+(\Delta x)^{n-1}\right)
$$

DERIVATIVES

COMPUTATION

POWER RULE: $y=x^{n}$ for $n \in \mathbb{Z}, n \neq 0$

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

Proof:

$$
\frac{d y}{d x}=\lim _{(\Delta x) \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{n}-x^{n}}{\Delta x}
$$

$$
=\lim _{\Delta x \rightarrow 0} \frac{\left(x^{n}+n x^{n-1} \Delta x+\cdots+n x(\Delta x)^{n-1}+(\Delta x)^{n}\right)-x^{n}}{\Delta x}
$$

$$
=\lim _{\Delta x \rightarrow 0} \frac{n x^{n-1} \Delta x+\frac{n(n-1)}{2!} x^{n-2}(\Delta x)^{2}+\cdots+n x(\Delta x)^{n-1}+(\Delta x)^{n}}{\Delta x}
$$

$$
=\lim _{\Delta x \rightarrow 0}\left(n x^{n-1}+\frac{n(n-1)}{2!} x^{n-2} \Delta x+\cdots+n x(\Delta x)^{n-2}+(\Delta x)^{n-1}\right)
$$

Substitute

Expand $(x+\Delta x)^{n}$

Cancel terms

Evaluate

$$
=n x^{n-1}
$$

DERIVATIVES

COMPUTATION
CONSTANT TIMES A FUNCTION: $y=c f(x)$

DERIVATIVES

COMPUTATION

CONSTANT TIMES A FUNCTION: $y=c f(x)$

$$
\frac{d}{d x} c f(x)=c \frac{d}{d x} f(x)=c f^{\prime}(x)
$$

DERIVATIVES

COMPUTATION

CONSTANT TIMES A FUNCTION: $y=c f(x)$

$$
\frac{d}{d x} c f(x)=c \frac{d}{d x} f(x)=c f^{\prime}(x)
$$

Proof:

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{c f(x+\Delta x)-c f(x)}{\Delta x} \quad \text { Substitute }
$$

DERIVATIVES

COMPUTATION

CONSTANT TIMES A FUNCTION: $y=c f(x)$

$$
\frac{d}{d x} c f(x)=c \frac{d}{d x} f(x)=c f^{\prime}(x)
$$

Proof:

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{c f(x+\Delta x)-c f(x)}{\Delta x} & & \text { Substitute } \\
& =\lim _{\Delta x \rightarrow 0} \frac{c(f(x+\Delta x)-f(x))}{\Delta x} & & \text { Factor } c
\end{aligned}
$$

DERIVATIVES

COMPUTATION

CONSTANT TIMES A FUNCTION: $y=c f(x)$

$$
\frac{d}{d x} c f(x)=c \frac{d}{d x} f(x)=c f^{\prime}(x)
$$

Proof:

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{c f(x+\Delta x)-c f(x)}{\Delta x} & & \text { Substitute } \\
& =\lim _{\Delta x \rightarrow 0} \frac{c(f(x+\Delta x)-f(x))}{\Delta x} & & \text { Factor } c \\
& =c \lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} & & \text { Evaluate }
\end{aligned}
$$

DERIVATIVES

COMPUTATION

CONSTANT TIMES A FUNCTION: $y=c f(x)$

$$
\frac{d}{d x} c f(x)=c \frac{d}{d x} f(x)=c f^{\prime}(x)
$$

Proof:

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{c f(x+\Delta x)-c f(x)}{\Delta x} & & \text { Substitute } \\
& =\lim _{\Delta x \rightarrow 0} \frac{c(f(x+\Delta x)-f(x))}{\Delta x} & & \text { Factor } c \\
& =c \lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} & & \text { Evaluate } \\
& =c f^{\prime}(x) & &
\end{aligned}
$$

DERIVATIVES

COMPUTATION

SUM OF FUNCTIONS: $y=f(x)+g(x)$

DERIVATIVES

COMPUTATION

SUM OF FUNCTIONS: $y=f(x)+g(x)$

$$
\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
$$

DERIVATIVES

COMPUTATION

SUM OF FUNCTIONS: $y=f(x)+g(x)$

$$
\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
$$

Proof:

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{(f(x+\Delta x)+g(x+\Delta x))-(f(x)+g(x))}{\Delta x} \quad \text { Substitute }
$$

DERIVATIVES

COMPUTATION

SUM OF FUNCTIONS: $y=f(x)+g(x)$

$$
\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
$$

Proof:

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{(f(x+\Delta x)+g(x+\Delta x))-(f(x)+g(x))}{\Delta x} & & \text { Substitute } \\
& =\lim _{\Delta x \rightarrow 0} \frac{(f(x+\Delta x)-f(x))+(g(x+\Delta x)-g(x))}{\Delta x} & & \text { Factorise }
\end{aligned}
$$

DERIVATIVES

COMPUTATION

SUM OF FUNCTIONS: $y=f(x)+g(x)$

$$
\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
$$

Proof:

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{(f(x+\Delta x)+g(x+\Delta x))-(f(x)+g(x))}{\Delta x} & & \text { Substitute } \\
& =\lim _{\Delta x \rightarrow 0} \frac{(f(x+\Delta x)-f(x))+(g(x+\Delta x)-g(x))}{\Delta x} & & \text { Factorise } \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x} & & \text { Limit rules }
\end{aligned}
$$

DERIVATIVES

COMPUTATION

SUM OF FUNCTIONS: $y=f(x)+g(x)$

$$
\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
$$

Proof:

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{(f(x+\Delta x)+g(x+\Delta x))-(f(x)+g(x))}{\Delta x} & & \text { Substitute } \\
& =\lim _{\Delta x \rightarrow 0} \frac{(f(x+\Delta x)-f(x))+(g(x+\Delta x)-g(x))}{\Delta x} & & \text { Factorise } \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x} & & \text { Limit rules } \\
& =f^{\prime}(x)+g^{\prime}(x) & &
\end{aligned}
$$

DERIVATIVES

COMPUTATION

PRODUCT RULE: $y=f(x) \cdot g(x)$

DERIVATIVES

COMPUTATION

PRODUCT RULE: $y=f(x) \cdot g(x)$

$$
\frac{d}{d x}(f(x) \cdot g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

DERIVATIVES

COMPUTATION

PRODUCT RULE: $y=f(x) \cdot g(x)$

$$
\frac{d}{d x}(f(x) \cdot g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Proof:

$\frac{d}{d x}[f(x) \cdot g(x)]$

DERIVATIVES

COMPUTATION

PRODUCT RULE: $y=f(x) \cdot g(x)$

$$
\frac{d}{d x}(f(x) \cdot g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Proof:

$\frac{d}{d x}[f(x) \cdot g(x)]$

$$
=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) \cdot g(x+\Delta x)-f(x) \cdot g(x)}{\Delta x}
$$

DERIVATIVES

COMPUTATION

PRODUCT RULE: $y=f(x) \cdot g(x)$

$$
\frac{d}{d x}(f(x) \cdot g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Proof:

$\frac{d}{d x}[f(x) \cdot g(x)]$

$$
\begin{aligned}
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) \cdot g(x+\Delta x)-f(x) \cdot g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) g(x+\Delta x)-f(x+\Delta x) g(x)+f(x+\Delta x) g(x)-f(x) g(x)}{\Delta x}
\end{aligned}
$$

Add and subtract $f(x+\Delta x) g(x)$

DERIVATIVES

COMPUTATION

PRODUCT RULE: $y=f(x) \cdot g(x)$

$$
\frac{d}{d x}(f(x) \cdot g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Proof:

$\frac{d}{d x}[f(x) \cdot g(x)]$

$$
\begin{aligned}
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) \cdot g(x+\Delta x)-f(x) \cdot g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) g(x+\Delta x)-f(x+\Delta x) g(x)+f(x+\Delta x) g(x)-f(x) g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)[g(x+\Delta x)-g(x)]+[f(x+\Delta x)-f(x)] g(x)}{\Delta x}
\end{aligned}
$$

Add and subtract $f(x+\Delta x) g(x)$

Re arrange

DERIVATIVES

COMPUTATION

PRODUCT RULE: $y=f(x) \cdot g(x)$

$$
\frac{d}{d x}(f(x) \cdot g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Proof:

$\frac{d}{d x}[f(x) \cdot g(x)]$

$$
\begin{aligned}
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) \cdot g(x+\Delta x)-f(x) \cdot g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) g(x+\Delta x)-f(x+\Delta x) g(x)+f(x+\Delta x) g(x)-f(x) g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)[g(x+\Delta x)-g(x)]+[f(x+\Delta x)-f(x)] g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} f(x+\Delta x) \cdot \frac{g(x+\Delta x)-g(x)}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \cdot g(x)
\end{aligned}
$$

Add and subtract $f(x+\Delta x) g(x)$

Re arrange

Limit rules

DERIVATIVES

COMPUTATION

PRODUCT RULE: $y=f(x) \cdot g(x)$

$$
\frac{d}{d x}(f(x) \cdot g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Proof:

$\frac{d}{d x}[f(x) \cdot g(x)]$

$$
\begin{aligned}
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) \cdot g(x+\Delta x)-f(x) \cdot g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) g(x+\Delta x)-f(x+\Delta x) g(x)+f(x+\Delta x) g(x)-f(x) g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)[g(x+\Delta x)-g(x)]+[f(x+\Delta x)-f(x)] g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} f(x+\Delta x) \cdot \frac{g(x+\Delta x)-g(x)}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \cdot g(x) \\
& =\underbrace{\lim _{\Delta x \rightarrow 0} f(x+\Delta x)}_{f(x)} \cdot \underbrace{\lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x}}_{g^{\prime}(x)}+\underbrace{\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}}_{f^{\prime}(x)} \cdot \underbrace{\lim _{\Delta x \rightarrow 0} g(x)}_{g(x)}= \\
& \text { Add and subtract } \\
& f(x+\Delta x) g(x) \\
& \text { Re arrange } \\
& \text { Limit rules }
\end{aligned}
$$

DERIVATIVES

COMPUTATION

PRODUCT RULE: $y=f(x) \cdot g(x)$

$$
\frac{d}{d x}(f(x) \cdot g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Proof:

$$
\begin{aligned}
& \frac{d}{d x}[f(x) \cdot g(x)] \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) \cdot g(x+\Delta x)-f(x) \cdot g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) g(x+\Delta x)-f(x+\Delta x) g(x)+f(x+\Delta x) g(x)-f(x) g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)[g(x+\Delta x)-g(x)]+[f(x+\Delta x)-f(x)] g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} f(x+\Delta x) \cdot \frac{g(x+\Delta x)-g(x)}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \cdot g(x) \\
& =\underbrace{\lim _{\Delta x \rightarrow 0} f(x+\Delta x)}_{f(x)} \cdot \underbrace{\lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x}}_{g^{\prime}(x)}+\underbrace{\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}}_{f^{\prime}(x)} \cdot \underbrace{\lim _{\Delta x \rightarrow 0} g(x)}_{g(x)}= \\
& =f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
& \text { Add and subtract } \\
& f(x+\Delta x) g(x) \\
& \text { Re arrange } \\
& \text { Limit rules }
\end{aligned}
$$

DERIVATIVES

COMPUTATION

CHAIN RULE: $y=f(g(x))$

DERIVATIVES

COMPUTATION

CHAIN RULE: $y=f(g(x))$

$$
\frac{d}{d x} f(g(x))=\frac{d f(x)}{d g(x)} \cdot \frac{d g(x)}{d x}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

DERIVATIVES

COMPUTATION

CHAIN RULE: $y=f(g(x))$

$$
\frac{d}{d x} f(g(x))=\frac{d f(x)}{d g(x)} \cdot \frac{d g(x)}{d x}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Proof:

Notice that for a continuous function $g(x)$ at a point:

$$
\text { as } \Delta x \rightarrow 0 \Rightarrow \Delta g(x) \rightarrow 0
$$

DERIVATIVES

COMPUTATION

CHAIN RULE: $y=f(g(x))$

$$
\frac{d}{d x} f(g(x))=\frac{d f(x)}{d g(x)} \cdot \frac{d g(x)}{d x}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Proof:

Notice that for a continuous function $g(x)$ at a point:

$$
\text { as } \Delta x \rightarrow 0 \Rightarrow \Delta g(x) \rightarrow 0
$$

Then the result follows:
$\frac{d f(g(x))}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta g} \cdot \frac{\Delta g}{\Delta x}=\lim _{\Delta g \rightarrow 0} \frac{\Delta f}{\Delta g} \cdot \lim _{\Delta x \rightarrow 0} \frac{\Delta g}{\Delta x}=\frac{d f}{d g} \cdot \frac{d g}{d x}$

DERIVATIVES

COMPUTATION
QUOTIENT RULE: $y=\frac{f(x)}{g(x)}$

DERIVATIVES

COMPUTATION

QUOTIENT RULE: $y=\frac{f(x)}{g(x)}$

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{\frac{d}{d x} f(x) \cdot g(x)-f(x) \frac{d}{d x} g(x)}{g(x)^{2}}=\frac{f^{\prime}(x) g(x)+f(x) g^{\prime}(x)}{g(x)^{2}}
$$

DERIVATIVES

COMPUTATION

QUOTIENT RULE: $y=\frac{f(x)}{g(x)}$

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{\frac{d}{d x} f(x) \cdot g(x)-f(x) \frac{d}{d x} g(x)}{g(x)^{2}}=\frac{f^{\prime}(x) g(x)+f(x) g^{\prime}(x)}{g(x)^{2}}
$$

Proof:

$$
\text { Notice that } \frac{f(x)}{g(x)}=f(x) \cdot g(x)^{-1}
$$

DERIVATIVES

COMPUTATION

QUOTIENT RULE: $y=\frac{f(x)}{g(x)}$

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{\frac{d}{d x} f(x) \cdot g(x)-f(x) \frac{d}{d x} g(x)}{g(x)^{2}}=\frac{f^{\prime}(x) g(x)+f(x) g^{\prime}(x)}{g(x)^{2}}
$$

Proof:

$$
\text { Notice that } \frac{f(x)}{g(x)}=f(x) \cdot g(x)^{-1}
$$

Apply the product rule, for the second term use the power rule for $g(x)^{-1}$ then apply the chain rule.

DERIVATIVES

IMPLICIT DIFFERENTIATION

Up to now all the functions have been of the form $y=f(x)$

DERIVATIVES

IMPLICIT DIFFERENTIATION

Up to now all the functions have been of the form $y=f(x)$
However, it is not always obvious which is the independent variable: $F(x, y)=0$

DERIVATIVES

IMPLICIT DIFFERENTIATION

Up to now all the functions have been of the form $y=f(x)$
However, it is not always obvious which is the independent variable: $F(x, y)=0$
In these cases it is not straight forward what variable depends on which, but we can just assume that it does and differentiate implicitly.

DERIVATIVES

IMPLICIT DIFFERENTIATION

Up to now all the functions have been of the form $y=f(x)$
However, it is not always obvious which is the independent variable: $F(x, y)=0$
In these cases it is not straight forward what variable depends on which, but we can just assume that it does and differentiate implicitly.
Example: take x to be a function of y, such that $x=g(y)$ and $x^{\prime}=\frac{d x}{d y}$.

DERIVATIVES

IMPLICIT DIFFERENTIATION

Up to now all the functions have been of the form $y=f(x)$
However, it is not always obvious which is the independent variable: $F(x, y)=0$
In these cases it is not straight forward what variable depends on which, but we can just assume that it does and differentiate implicitly.
Example: take x to be a function of y, such that $x=g(y)$ and $x^{\prime}=\frac{d x}{d y}$.

$$
x^{2}+y^{2}=25 \quad \text { Using implicit differentiation w.r.t. } \mathrm{y}
$$

DERIVATIVES

IMPLICIT DIFFERENTIATION

Up to now all the functions have been of the form $y=f(x)$
However, it is not always obvious which is the independent variable: $F(x, y)=0$
In these cases it is not straight forward what variable depends on which, but we can just assume that it does and differentiate implicitly.
Example: take x to be a function of y, such that $x=g(y)$ and $x^{\prime}=\frac{d x}{d y}$.

$$
\begin{aligned}
x^{2}+y^{2}=25 & \text { Using implicit differentiation w.r.t. } \mathrm{y} \\
2 x \cdot x^{\prime}+2 y=0 & \text { Solving for } \mathrm{x}^{\prime}
\end{aligned}
$$

DERIVATIVES

IMPLICIT DIFFERENTIATION

Up to now all the functions have been of the form $y=f(x)$
However, it is not always obvious which is the independent variable: $F(x, y)=0$
In these cases it is not straight forward what variable depends on which, but we can just assume that it does and differentiate implicitly.
Example: take x to be a function of y, such that $x=g(y)$ and $x^{\prime}=\frac{d x}{d y}$.

$$
\begin{aligned}
x^{2}+y^{2}=25 & \text { Using implicit differentiation w.r.t. } \mathrm{y} \\
2 x \cdot x^{\prime}+2 y=0 & \text { Solving for } \mathrm{x}^{\prime} \\
x^{\prime}=-\frac{y}{x} &
\end{aligned}
$$

DERIVATIVES

IMPLICIT DIFFERENTIATION

Also we can use Implicit differentiation on $y=x^{n}$ when $n \in \mathbb{Q}$ (we have already proven it for $n \in \mathbb{Z}$).

DERIVATIVES

IMPLICIT DIFFERENTIATION

Also we can use Implicit differentiation on $y=x^{n}$ when $n \in \mathbb{Q}$ (we have already proven it for $n \in \mathbb{Z}$).

Since n is a rational number we can put it in the form $n=\frac{p}{q}$. So now we can write

$$
y=x^{\frac{p}{q}}
$$

DERIVATIVES

IMPLICIT DIFFERENTIATION

Also we can use Implicit differentiation on $y=x^{n}$ when $n \in \mathbb{Q}$ (we have already proven it for $n \in \mathbb{Z}$).

Since n is a rational number we can put it in the form $n=\frac{p}{q}$. So now we can write

$$
y=x^{\frac{p}{q}}
$$

And taking into account that y is a function of x all the way along, the next two expressions are equivalent

$$
y=x^{\frac{p}{q}} \Leftrightarrow y^{q}=x^{p}
$$

DERIVATIVES

IMPLICIT DIFFERENTIATION

Assuming y depends on x and using implicit differentiation on both sides of $y^{q}=x^{p}$:

DERIVATIVES

IMPLICIT DIFFERENTIATION

Assuming y depends on x and using implicit differentiation on both sides of $y^{q}=x^{p}$:

$$
q y^{q-1} y^{\prime}=p x^{p-1}
$$

By chain rule

DERIVATIVES

IMPLICIT DIFFERENTIATION

Assuming y depends on x and using implicit differentiation on both sides of $y^{q}=x^{p}$:

$$
\begin{aligned}
q y^{q-1} y^{\prime} & =p x^{p-1} \\
\Leftrightarrow y^{\prime} & =\frac{p x^{p-1}}{q y^{q-1}}
\end{aligned}
$$

By chain rule
Solving for y^{\prime}

DERIVATIVES

IMPLICIT DIFFERENTIATION

Assuming y depends on x and using implicit differentiation on both sides of $y^{q}=x^{p}$:

$$
\begin{aligned}
q y^{q-1} y^{\prime} & =p x^{p-1} \\
\Leftrightarrow y^{\prime} & =\frac{p x^{p-1}}{q y^{q-1}} \\
\Leftrightarrow y^{\prime} & =\frac{p x^{p-1}}{q\left(x^{\frac{p}{q}}\right)^{q-1}}
\end{aligned}
$$

By chain rule
Solving for y^{\prime}
Substituting $y=x^{\frac{p}{q}}$

DERIVATIVES

IMPLICIT DIFFERENTIATION

Assuming y depends on x and using implicit differentiation on both sides of $y^{q}=x^{p}$:

$$
\begin{aligned}
& q y^{q-1} y^{\prime}=p x^{p-1} \\
& \Leftrightarrow y^{\prime}=\frac{p x^{p-1}}{q y^{q-1}} \\
& \Leftrightarrow y^{\prime}=\frac{p x^{p-1}}{q\left(x^{\frac{p}{q}}\right)^{q-1}} \\
& \Leftrightarrow y^{\prime}=\frac{p x^{p-1}}{q x^{p-\frac{p}{q}}}
\end{aligned}
$$

By chain rule
Solving for y^{\prime}
Substituting $y=x^{\frac{p}{q}}$

Multiplying exponents

DERIVATIVES

IMPLICIT DIFFERENTIATION

Assuming y depends on x and using implicit differentiation on both sides of $y^{q}=x^{p}$:

$$
\begin{aligned}
q y^{q-1} y^{\prime} & =p x^{p-1} \\
\Leftrightarrow y^{\prime} & =\frac{p x^{p-1}}{q y^{q-1}} \\
\Leftrightarrow y^{\prime} & =\frac{p x^{p-1}}{q\left(x^{\frac{p}{q}}\right)^{q-1}} \\
\Leftrightarrow y^{\prime} & =\frac{p x^{p-1}}{q x^{p-\frac{p}{q}}} \\
\Leftrightarrow y^{\prime} & =\frac{p}{q} x^{p-1-p+\frac{p}{q}}
\end{aligned}
$$

By chain rule Solving for y^{\prime}

Substituting $y=x^{\frac{p}{q}}$

Multiplying exponents

DERIVATIVES

IMPLICIT DIFFERENTIATION

Assuming y depends on x and using implicit differentiation on both sides of $y^{q}=x^{p}$:

$$
\begin{array}{rlr}
q y^{q-1} y^{\prime} & =p x^{p-1} & \text { By chain rule } \\
\Leftrightarrow y^{\prime} & =\frac{p x^{p-1}}{q y^{q-1}} & \text { Solving for } y^{\prime} \\
\Leftrightarrow y^{\prime} & =\frac{p x^{p-1}}{q\left(x^{\left.\frac{p}{q}\right)^{q-1}}\right.} & \text { Substituting } y=x^{\frac{p}{q}} \\
\Leftrightarrow y^{\prime} & =\frac{p x^{p-1}}{q x^{p-\frac{p}{q}}} & \text { Multiplying exponents } \\
\Leftrightarrow y^{\prime} & =\frac{p}{q} x^{p-1-p+\frac{p}{q}} & \\
\Leftrightarrow y^{\prime} & =\frac{p}{q} x^{\frac{p}{q}-1}=n x^{n-1} &
\end{array}
$$

DERIVATIVES

COMPUTATION

EXPONENTIAL: $y=a^{x}$

DERIVATIVES

COMPUTATION

EXPONENTIAL: $y=a^{x}$

$$
\frac{d y}{d x}=a^{x} \ln a
$$

DERIVATIVES

COMPUTATION

EXPONENTIAL: $y=a^{x}$

$$
\frac{d y}{d x}=a^{x} \ln a
$$

Proof:

Using the definition of derivative:

DERIVATIVES

COMPUTATION

EXPONENTIAL: $y=a^{x}$

$$
\frac{d y}{d x}=a^{x} \ln a
$$

Proof:

Using the definition of derivative:

$$
\frac{d a^{x}}{d x}=\lim _{\Delta x \rightarrow 0} \frac{a^{x+\Delta x}-a^{x}}{\Delta x}
$$

DERIVATIVES
 COMPUTATION

EXPONENTIAL: $y=a^{x}$

$$
\frac{d y}{d x}=a^{x} \ln a
$$

Proof:

Using the definition of derivative:
$\frac{d a^{x}}{d x}=\lim _{\Delta x \rightarrow 0} \frac{a^{x+\Delta x}-a^{x}}{\Delta x}=\lim _{\Delta x \rightarrow 0} a^{x} \frac{a^{\Delta x}-1}{\Delta x}$

Now let's assume that $\exists!a=e \mid M(e)=1$, Then:

DERIVATIVES
 COMPUTATION

EXPONENTIAL: $y=a^{x}$

$$
\frac{d y}{d x}=a^{x} \ln a
$$

Proof:

Using the definition of derivative:
$\frac{d a^{x}}{d x}=\lim _{\Delta x \rightarrow 0} \frac{a^{x+\Delta x}-a^{x}}{\Delta x}=\lim _{\Delta x \rightarrow 0} a^{x} \frac{a^{\Delta x}-1}{\Delta x}=a^{x} \underbrace{\lim _{\Delta x \rightarrow 0} \frac{a^{\Delta x}-1}{\Delta x}}_{M(a)}$
Now let's assume that $\exists!a=e \mid M(e)=1$, Then:

$$
\frac{d}{d x} e^{x}=e^{x} M(e)=e^{x}
$$

DERIVATIVES
 COMPUTATION

EXPONENTIAL: $y=a^{x}$

$$
\frac{d y}{d x}=a^{x} \ln a
$$

Proof:

Using the definition of derivative:

$$
\frac{d a^{x}}{d x}=\lim _{\Delta x \rightarrow 0} \frac{a^{x+\Delta x}-a^{x}}{\Delta x}=\lim _{\Delta x \rightarrow 0} a^{x} \frac{a^{\Delta x}-1}{\Delta x}=a^{x} \underbrace{\lim _{\Delta x \rightarrow 0} \frac{a^{\Delta x}-1}{\Delta x}}_{M(a)}=a^{x} M(a)
$$

Now let's assume that $\exists!a=e \mid M(e)=1$, Then:

$$
\frac{d}{d x} e^{x}=e^{x} M(e)=e^{x}
$$

DERIVATIVES

COMPUTATION
LOGARITHM: $y=\ln x$

DERIVATIVES

COMPUTATION
LOGARITHM: $y=\ln x$

$$
\frac{d y}{d x}=\frac{1}{x}
$$

DERIVATIVES

COMPUTATION

LOGARITHM: $y=\ln x$

$$
\frac{d y}{d x}=\frac{1}{x}
$$

Proof:

DERIVATIVES

COMPUTATION

LOGARITHM: $y=\ln x$

$$
\frac{d y}{d x}=\frac{1}{x}
$$

Proof:

Remember that $y=\ln x \Longleftrightarrow e^{y}=x$, so:

DERIVATIVES

COMPUTATION

LOGARITHM: $y=\ln x$

$$
\frac{d y}{d x}=\frac{1}{x}
$$

Proof:

Remember that $y=\ln x \Longleftrightarrow e^{y}=x$, so:

$$
e^{y} \cdot y^{\prime}=1
$$

Differentiating implicitly

DERIVATIVES
 COMPUTATION

LOGARITHM: $y=\ln x$

$$
\frac{d y}{d x}=\frac{1}{x}
$$

Proof:

Remember that $y=\ln x \Longleftrightarrow e^{y}=x$, so:

$$
\begin{aligned}
e^{y} \cdot y^{\prime} & =1 & \text { Differentiating implicitly } \\
y^{\prime} & =\frac{1}{e^{y}} & \text { Solving for } y^{\prime}
\end{aligned}
$$

DERIVATIVES

 COMPUTATION

 COMPUTATION}

LOGARITHM: $y=\ln x$

$$
\frac{d y}{d x}=\frac{1}{x}
$$

Proof:

Remember that $y=\ln x \Longleftrightarrow e^{y}=x$, so:

$$
\begin{aligned}
e^{y} \cdot y^{\prime} & =1 & \text { Differentiating implicitly } \\
y^{\prime} & =\frac{1}{e^{y}} & \text { Solving for } y^{\prime} \\
y^{\prime} & =\frac{1}{e^{\ln x}} & \text { Substituting } y=\ln x
\end{aligned}
$$

DERIVATIVES

 COMPUTATION

 COMPUTATION}

LOGARITHM: $y=\ln x$

$$
\frac{d y}{d x}=\frac{1}{x}
$$

Proof:

Remember that $y=\ln x \Longleftrightarrow e^{y}=x$, so:

$$
\begin{array}{rlr}
e^{y} \cdot y^{\prime} & =1 & \text { Differentiating implicitly } \\
y^{\prime} & =\frac{1}{e^{y}} & \text { Solving for } y^{\prime} \\
y^{\prime} & =\frac{1}{e^{\ln x}} & \text { Substituting } y=\ln x \\
y^{\prime} & =\frac{1}{x} &
\end{array}
$$

DERIVATIVES

COMPUTATION
EXPONETIALS: WHACHT OUT!!! we derived $\frac{d}{d x} e^{x}$ but what about the more general form $\frac{d}{d x} a^{x}$?

DERIVATIVES

COMPUTATION

EXPONETIALS: WHACHT OUT!!! we derived $\frac{d}{d x} e^{x}$ but what about the more general form $\frac{d}{d x} a^{x}$?
Proof (continuation):

DERIVATIVES

COMPUTATION

EXPONETIALS: WHACHT OUT!!! we derived $\frac{d}{d x} e^{x}$ but what about the more general form $\frac{d}{d x} a^{x}$?
Proof (continuation):
Rewrite a as $e^{l n a}$ then:

DERIVATIVES

COMPUTATION

EXPONETIALS: WHACHT OUT!!! we derived $\frac{d}{d x} e^{x}$ but what about the more general form $\frac{d}{d x} a^{x}$?

Proof (continuation):

Rewrite a as $e^{\ln a}$ then:

$$
a^{x}=e^{\ln a^{x}}=e^{x \ln a}
$$

DERIVATIVES

COMPUTATION

EXPONETIALS: WHACHT OUT!!! we derived $\frac{d}{d x} e^{x}$ but what about the more general form $\frac{d}{d x} a^{x}$?

Proof (continuation):

Rewrite a as $e^{\ln a}$ then:

$$
\begin{aligned}
a^{x} & =e^{\ln a^{x}}=e^{x \ln a} \\
\frac{d}{d x} a^{x} & =\ln a e^{x \ln a}
\end{aligned}
$$

Differentiating implicitly

DERIVATIVES

COMPUTATION

EXPONETIALS: WHACHT OUT!!! we derived $\frac{d}{d x} e^{x}$ but what about the more general form $\frac{d}{d x} a^{x}$?

Proof (continuation):

Rewrite a as $e^{\ln a}$ then:

$$
\begin{aligned}
a^{x} & =e^{\ln a^{x}}=e^{x \ln a} \\
\frac{d}{d x} a^{x} & =\ln a e^{x \ln a} \\
\frac{d}{d x} a^{x} & =\ln a\left(e^{\ln a}\right)^{x}
\end{aligned}
$$

Differentiating implicitly
Re arranging

DERIVATIVES

COMPUTATION

EXPONETIALS: WHACHT OUT!!! we derived $\frac{d}{d x} e^{x}$ but what about the more general form $\frac{d}{d x} a^{x}$?

Proof (continuation):

Rewrite a as $e^{\ln a}$ then:

$$
\begin{aligned}
a^{x} & =e^{\ln a^{x}}=e^{x \ln a} \\
\frac{d}{d x} a^{x} & =\ln a e^{x \ln a} \\
\frac{d}{d x} a^{x} & =\ln a\left(e^{\ln a}\right)^{x} \\
\frac{d}{d x} a^{x} & =a^{x} \ln a
\end{aligned}
$$

Differentiating implicitly
Re arranging
Undoing the change

DERIVATIVES

COMPUTATION

EXPONETIALS: WHACHT OUT!!! we derived $\frac{d}{d x} e^{x}$ but what about the more general form $\frac{d}{d x} a^{x}$?

Proof (continuation):

Rewrite a as $e^{\ln a}$ then:

$$
\begin{aligned}
a^{x} & =e^{\ln a^{x}}=e^{x \ln a} \\
\frac{d}{d x} a^{x} & =\ln a e^{x \ln a} \\
\frac{d}{d x} a^{x} & =\ln a\left(e^{\ln a}\right)^{x} \\
\frac{d}{d x} a^{x} & =a^{x} \ln a
\end{aligned}
$$

Differentiating implicitly
Re arranging
Undoing the change

And notice that then $M(a)=\ln a$

DERIVATIVES

COMPUTATION

EXPONETIALS: WHACHT OUT!!! we derived $\frac{d}{d x} e^{x}$ but what about the more general form $\frac{d}{d x} a^{x}$?
Proof (continuation):
Rewrite a as $e^{\ln a}$ then:

$$
\begin{aligned}
a^{x} & =e^{\ln a^{x}}=e^{x \ln a} \\
\frac{d}{d x} a^{x} & =\ln a e^{x \ln a} \\
\frac{d}{d x} a^{x} & =\ln a\left(e^{\ln a}\right)^{x} \\
\frac{d}{d x} a^{x} & =a^{x} \ln a
\end{aligned}
$$

Differentiating implicitly
Re arranging
Undoing the change

And notice that then $M(a)=\ln a$
The proof for the $\log _{a} x$ in any base a is identical to the $\ln x$

DERIVATIVES
 APPLICATIONS

INCREASE: What means for a function to be increasing?
at that point

DERIVATIVES

APPLICATIONS

INCREASE: What means for a function to be increasing?

Let $f(x)$ be on an interval I, and a, b two points such that $a<b$, then a function is said to be increasing if

$$
a<b \Rightarrow f(a)<f(b)
$$

at that point

DERIVATIVES

APPLICATIONS

INCREASE: What means for a function to be increasing?

Let $f(x)$ be on an interval I, and a, b two points such that $a<b$, then a function is said to be increasing if

$$
a<b \Rightarrow f(a)<f(b)
$$

Take a point $x=x_{0}$, One application of the derivative is that if

$$
f^{\prime}\left(x_{0}\right)>0 \Rightarrow f\left(x_{0}\right) \text { is increasing }
$$

at that point

DERIVATIVES

APPLICATIONS

INCREASE: What means for a function to be increasing?

Let $f(x)$ be on an interval I, and a, b two points such that $a<b$, then a function is said to be increasing if

$$
a<b \Rightarrow f(a)<f(b)
$$

Take a point $x=x_{0}$, One application of the derivative is that if

$$
f^{\prime}\left(x_{0}\right)>0 \Rightarrow f\left(x_{0}\right) \text { is increasing }
$$

at that point

DERIVATIVES

APPLICATIONS

INCREASE: What means for a function to be increasing?

Let $f(x)$ be on an interval I, and a, b two points such that $a<b$, then a function is said to be increasing if

$$
a<b \Rightarrow f(a)<f(b)
$$

Take a point $x=x_{0}$, One application of the derivative is that if

$$
f^{\prime}\left(x_{0}\right)>0 \Rightarrow f\left(x_{0}\right) \text { is increasing }
$$

at that point

DECREASE:

$$
\text { if } a<b \Rightarrow f(a)>f(b)
$$

if $f^{\prime}\left(x_{0}\right)<0 \Rightarrow f\left(x_{0}\right)$ is decreasing at that point

DERIVATIVES

APPLICATIONS

REMARK: the direction does not go in the other way, i.e.

$$
f\left(x_{0}\right) \text { increasing } \nRightarrow f^{\prime}\left(x_{0}\right)>0
$$

at that point

DERIVATIVES

APPLICATIONS

REMARK: the direction does not go in the other way, i.e.

$$
f\left(x_{0}\right) \text { increasing } \nRightarrow f^{\prime}\left(x_{0}\right)>0
$$

at that point

The derivative $f^{\prime}(0)=0$ but the function is increasing at that point.

DERIVATIVES

APPLICATIONS
MAXIMUM/MINIMUM: Where does the function attains its local maxima and minima?

DERIVATIVES

APPLICATIONS
MAXIMUM/MINIMUM: Where does the function attains its local maxima and minima?
if $f^{\prime}\left(x_{0}\right)=0 \Rightarrow f\left(x_{0}\right)$ is a critical point

DERIVATIVES

APPLICATIONS
MAXIMUM/MINIMUM: Where does the function attains its local maxima and minima?

$$
\text { if } f^{\prime}\left(x_{0}\right)=0 \Rightarrow f\left(x_{0}\right) \text { is a critical point }
$$

WHACHT OUT!!! $f^{\prime}\left(x_{0}\right)=0$ does not mean that we are in a maximum or a minimum at x_{0}. I could be an inflection point

DERIVATIVES
 APPLICATIONS

CONCAVITY AND POINTS OF INFLECTION: In what direction does the curve of the function bends?

DERIVATIVES
 APPLICATIONS

CONCAVITY AND POINTS OF INFLECTION: In what direction does the curve of the function bends?

DERIVATIVES
 APPLICATIONS

CONCAVITY AND POINTS OF INFLECTION: In what direction does the curve of the function bends?

- If $f^{\prime \prime}\left(x_{0}\right)>0 \Rightarrow$
- $f\left(x_{0}\right)$ is Concave-up

DERIVATIVES

APPLICATIONS

CONCAVITY AND POINTS OF INFLECTION: In what direction does the curve of the function bends?

- If $f^{\prime \prime}\left(x_{0}\right)>0 \Rightarrow$
- $f\left(x_{0}\right)$ is Concave-up
- If in addition $f^{\prime}\left(x_{0}\right)=0 \Rightarrow$ attains a minimum

DERIVATIVES

APPLICATIONS

CONCAVITY AND POINTS OF INFLECTION: In what direction does the curve of the function bends?

- If $f^{\prime \prime}\left(x_{0}\right)>0 \Rightarrow$
- $f\left(x_{0}\right)$ is Concave-up
- If $f^{\prime \prime}\left(x_{0}\right)<0 \Rightarrow$
- $f\left(x_{0}\right)$ is Concave-down
- If in addition $f^{\prime}\left(x_{0}\right)=0 \Rightarrow$ attains a minimum

DERIVATIVES

APPLICATIONS

CONCAVITY AND POINTS OF INFLECTION: In what direction does the curve of the function bends?

- If $f^{\prime \prime}\left(x_{0}\right)>0 \Rightarrow$
- $f\left(x_{0}\right)$ is Concave-up
- If in addition $f^{\prime}\left(x_{0}\right)=0 \Rightarrow$ attains a minimum

- If $f^{\prime \prime}\left(x_{0}\right)<0 \Rightarrow$
- $f\left(x_{0}\right)$ is Concave-down
- If in addition $f^{\prime}\left(x_{0}\right)=0 \Rightarrow$ attains a maximum

DERIVATIVES

CONCAVITY AND POINTS OF INFLECTION: In what direction does the curve of the function bends?

- If $f^{\prime \prime}\left(x_{0}\right)>0 \Rightarrow$
- $f\left(x_{0}\right)$ is Concave-up
- If in addition $f^{\prime}\left(x_{0}\right)=0 \Rightarrow$ attains a minimum

- If $f^{\prime \prime}\left(x_{0}\right)<0 \Rightarrow$
- $f\left(x_{0}\right)$ is Concave-down
- If in addition $f^{\prime}\left(x_{0}\right)=0 \Rightarrow$ attains a maximum
- If $f^{\prime \prime}\left(x_{0}\right)=0 \Rightarrow f\left(x_{0}\right)$ could be max, min or an inflection point

DERIVATIVES

APPLICATTIONS

APPROXIMATIONS:

$$
f(x+d x) \approx f(x)+f^{\prime}(x)\{(x+d x)-x\}, \text { for } x \approx x+d x
$$

DERIVATIVES

APPLICATTIONS

APPROXIMATIONS:

$$
f(x+d x) \approx f(x)+f^{\prime}(x)\{(x+d x)-x\}, \text { for } x \approx x+d x
$$

DERIVATIVES

APPLICATTIONS

APPROXIMATIONS:

$$
f(x+d x) \approx f(x)+f^{\prime}(x)\{(x+d x)-x\}, \text { for } x \approx x+d x
$$

Play with this example to see how good an approximation can get as we get very near to the point.

DERIVATIVES
 APPLICATIONS

L'HOSPITAL'S RULE:

Theorem: If $f(x)$ and $g(x)$ are both equal to zero at $x=a$ and have derivatives there, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

provided that $g^{\prime}(a) \neq 0$.

DERIVATIVES
 APPLICATIONS

L'HOSPITAL'S RULE:

Theorem: If $f(x)$ and $g(x)$ are both equal to zero at $x=a$ and have derivatives there, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

provided that $g^{\prime}(a) \neq 0$.

Proof:

DERIVATIVES

APPLICATIONS

L'HOSPITAL'S RULE:

Theorem: If $f(x)$ and $g(x)$ are both equal to zero at $x=a$ and have derivatives there, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

provided that $g^{\prime}(a) \neq 0$.
Proof:since $f(a)=0$ and $g(a)=0$ we can write

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{g(x)-g(a)}
$$

DERIVATIVES

APPLICATIONS

L'HOSPITAL'S RULE:

Theorem: If $f(x)$ and $g(x)$ are both equal to zero at $x=a$ and have derivatives there, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

provided that $g^{\prime}(a) \neq 0$.
Proof:since $f(a)=0$ and $g(a)=0$ we can write

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{g(x)-g(a)}=\lim _{x \rightarrow a} \frac{(f(x)-f(a)) /(x-a)}{(g(x)-g(a)) /(x-a)}
$$

DERIVATIVES

APPLICATIONS

L'HOSPITAL'S RULE:

Theorem: If $f(x)$ and $g(x)$ are both equal to zero at $x=a$ and have derivatives there, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

provided that $g^{\prime}(a) \neq 0$.
Proof:since $f(a)=0$ and $g(a)=0$ we can write

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{g(x)-g(a)}=\lim _{x \rightarrow a} \frac{(f(x)-f(a)) /(x-a)}{(g(x)-g(a)) /(x-a)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

DERIVATIVES
 APPLICATTIONS

L'HOSPITAL'S RULE:

Example:

$$
\begin{array}{r}
\lim _{x \rightarrow 2} \frac{3 x^{2}-7 x+2}{x^{2}+5 x-14}=\frac{0}{0} \\
\lim _{x \rightarrow 2} \frac{(x-2)(3 x-1)}{(x-2)(x+7)}=\frac{5}{9}
\end{array}
$$

Factorising

DERIVATIVES
 APPLICATTIONS

L'HOSPITAL'S RULE:

Example:

$$
\begin{array}{r}
\lim _{x \rightarrow 2} \frac{3 x^{2}-7 x+2}{x^{2}+5 x-14}=\frac{0}{0} \\
\lim _{x \rightarrow 2} \frac{(x-2)(3 x-1)}{(x-2)(x+7)}=\frac{5}{9}
\end{array}
$$

Factorising

Or using L'Hospital's rule:

$$
\begin{array}{r}
\lim _{x \rightarrow 2} \frac{3 x^{2}-7 x+2}{x^{2}+5 x-14}=\frac{0}{0} \\
\lim _{x \rightarrow 2} \frac{6 x-7}{2 x+5}=\frac{5}{9}
\end{array}
$$

L'H's rule

Table of Contents

1. Limits

2. Continuity
3. Derivatives
4. Integrals
5. Power Series
6. Multivariate Calculus
7. Implicit Function Theorem
8. Convex and Concave Functions

INTEGRALS

INTUITION

In the previous chapters we worked with the problem of tangents or finding the slope of a function at a point. We had to 'find the derivative'.

INTEGRALS

INTUITION

In the previous chapters we worked with the problem of tangents or finding the slope of a function at a point. We had to 'find the derivative'.

Now, we are endowed with the inverse problem, having the derivative we want to know what is the original function, or in other words we want to find the antiderivative.

INTEGRALS

INTUITION

In the previous chapters we worked with the problem of tangents or finding the slope of a function at a point. We had to 'find the derivative'.

Now, we are endowed with the inverse problem, having the derivative we want to know what is the original function, or in other words we want to find the antiderivative.

Another important concept is that of finding the area under the curve, which is called the process of integration.

INTEGRALS

INTUITION

In the previous chapters we worked with the problem of tangents or finding the slope of a function at a point. We had to 'find the derivative'.

Now, we are endowed with the inverse problem, having the derivative we want to know what is the original function, or in other words we want to find the antiderivative.

Another important concept is that of finding the area under the curve, which is called the process of integration.

As you have probably seen in your degree, integrals have plenty of applications like calculate the consumer surplus, work out the lifetime utility or derive the income distribution.

INTEGRALS

INTUITION

For our purposes it will be handy to introduce a 'new' notation of differentials.
We defined the slope as

$$
m=\frac{\Delta y}{\Delta x} s o \quad \Delta y=m \Delta x
$$

If we work on increments on the straight line, we take the differential counterpart, then

$$
\Delta y=d y, \Delta x=d x a n d t u h s d y=m d x
$$

INTEGRALS

INTUITION

Now consider the function $y=f(x)$

The differential $d x$ is any increment of $x,(\Delta x)$.

INTEGRALS

INTUITION

Now consider the function $y=f(x)$

The differential $d x$ is any increment of $x,(\Delta x)$.

And the differential $d y$ is any increment of y along the tangent line (see picture)

INTEGRALS

INTUITION

Now consider the function $y=f(x)$

The differential $d x$ is any increment of $x,(\Delta x)$.

And the differential $d y$ is any increment of y along the tangent line (see picture)
This will allow us to work with differential as if they were quotients.

INTEGRALS

INTUITION

ANTIDERIVATIVE: it is another name for indefinite integral.

INTEGRALS

INTUITION

ANTIDERIVATIVE: it is another name for indefinite integral.
They can be thought of the reverse operation of the derivative of $F(x)$

$$
F^{\prime}(x)=f(x) \Longleftrightarrow F(x)=\int f(x) d x
$$

INTEGRALS

INTUITION

ANTIDERIVATIVE: it is another name for indefinite integral.
They can be thought of the reverse operation of the derivative of $F(x)$

$$
F^{\prime}(x)=f(x) \Longleftrightarrow F(x)=\int f(x) d x
$$

By the very operation of the derivative, constants disappear. At the time of integration we have to take them back. So

INTEGRALS

INTUITION

ANTIDERIVATIVE: it is another name for indefinite integral.
They can be thought of the reverse operation of the derivative of $F(x)$

$$
F^{\prime}(x)=f(x) \Longleftrightarrow F(x)=\int f(x) d x
$$

By the very operation of the derivative, constants disappear. At the time of integration we have to take them back. So

$$
\int f(x) d x=F(x)+C
$$

INTEGRALS

INTUITION

ANTIDERIVATIVE: it is another name for indefinite integral.
They can be thought of the reverse operation of the derivative of $F(x)$

$$
F^{\prime}(x)=f(x) \Longleftrightarrow F(x)=\int f(x) d x
$$

By the very operation of the derivative, constants disappear. At the time of integration we have to take them back. So

$$
\int f(x) d x=F(x)+C
$$

INTEGRALS

INTUITION

Example:

$$
f(x)=3 x^{2} \Longleftrightarrow F(x)=x^{3}+C
$$

INTEGRALS

INTUITION

AREA: Definite Integrals can be thought of as the area under the curve

INTEGRALS

INTUITION

AREA: Definite Integrals can be thought of as the area under the curve

INTEGRALS

INTUITION

AREA: Definite Integrals can be thought of as the area under the curve

WHACHT OUT!!! Indefinite and definite integrals are two completely different objects, they must not be confused.

INTEGRALS

RIEMAN SUMS
It is difficult to measure the area under a curve, but we can approximate it using rectangles

INTEGRALS

RIEMAN SUMS

It is difficult to measure the area under a curve, but we can approximate it using rectangles

$$
\text { Area } \approx \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

INTEGRALS

RIEMAN SUMS

It is difficult to measure the area under a curve, but we can approximate it using rectangles

$$
\text { Area } \approx \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

INTEGRALS

RIEMAN SUMS

It is difficult to measure the area under a curve, but we can approximate it using rectangles

Of course, there is going to be some error, that can be avoided doing the intervals "as small as possible"

INTEGRALS

RIEMAN SUMS

It is difficult to measure the area under a curve, but we can approximate it using rectangles

Of course, there is going to be some error, that can be avoided doing the intervals "as small as possible"

$$
\text { Area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \frac{\Delta x}{n}
$$

INTEGRALS

FUNDAMENTAL THEOREM OF CALCULUS II
FUNDAMENTAL THEOREM OF CALCULUS II: Let $f(x)$ be a continuous non-negative function in a close interval $[a, b]$. Then:

INTEGRALS

FUNDAMENTAL THEOREM OF CALCULUS II
FUNDAMENTAL THEOREM OF CALCULUS II: Let $f(x)$ be a continuous non-negative function in a close interval $[a, b]$. Then:

$$
F(x)=\int_{a}^{x} f(t) d t \quad \text { or } \quad F^{\prime}(x)=f(x)
$$

INTEGRALS

FUNDAMENTAL THEOREM OF CALCULUS II

FUNDAMENTAL THEOREM OF CALCULUS II: Let $f(x)$ be a continuous non-negative function in a close interval $[a, b]$. Then:

$$
F(x)=\int_{a}^{x} f(t) d t \quad \text { or } \quad F^{\prime}(x)=f(x)
$$

PROOF:

$$
\Delta F=F(x+\Delta x)-F(x)=\int_{x}^{x+\Delta x} f(t) d t \approx f(x) \Delta x
$$

INTEGRALS

FUNDAMENTAL THEOREM OF CALCULUS II

FUNDAMENTAL THEOREM OF CALCULUS II: Let $f(x)$ be a continuous non-negative function in a close interval $[a, b]$. Then:

$$
F(x)=\int_{a}^{x} f(t) d t \quad \text { or } \quad F^{\prime}(x)=f(x)
$$

PROOF:

$$
\Delta F=F(x+\Delta x)-F(x)=\int_{x}^{x+\Delta x} f(t) d t \approx f(x) \Delta x
$$

INTEGRALS

FUNDAMENTAL THEOREM OF CALCULUS II

PROOF:

$$
\Delta F=F(x+\Delta x)-F(x)=\int_{x}^{x+\Delta x} f(t) d t \approx f(x) \Delta x
$$

INTEGRALS

FUNDAMENTAL THEOREM OF CALCULUS II

PROOF:

$$
\Delta F=F(x+\Delta x)-F(x)=\int_{x}^{x+\Delta x} f(t) d t \approx f(x) \Delta x
$$

Then:

$$
\Delta F(x) \approx f(x) \Delta x \Longleftrightarrow \frac{\Delta F(x)}{\Delta x} \approx f(x)
$$

INTEGRALS

FUNDAMENTAL THEOREM OF CALCULUS II

PROOF:

$$
\Delta F=F(x+\Delta x)-F(x)=\int_{x}^{x+\Delta x} f(t) d t \approx f(x) \Delta x
$$

Then:

$$
\Delta F(x) \approx f(x) \Delta x \Longleftrightarrow \frac{\Delta F(x)}{\Delta x} \approx f(x)
$$

Taking the limit as $\Delta x \rightarrow 0$

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta F(x)}{\Delta x}=f(x) \Longleftrightarrow F^{\prime}(x)=f(x)
$$

INTEGRALS

FUNDAMENTAL THEOREM OF CALCULUS I

FUNDAMENTAL THEOREM OF CALCULUS I: Let $f(x)$ be a continuous non-negative function in a close interval $[a, b]$. Then:

INTEGRALS

FUNDAMENTAL THEOREM OF CALCULUS I: Let $f(x)$ be a continuous non-negative function in a close interval $[a, b]$. Then:

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

INTEGRALS

FUNDAMENTAL THEOREM OF CALCULUS I: Let $f(x)$ be a continuous non-negative function in a close interval $[a, b]$. Then:

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

PROOF: Since integration give us not only a function but a family of them, we can define:

INTEGRALS

FUNDAMENTAL THEOREM OF CALCULUS I

FUNDAMENTAL THEOREM OF CALCULUS I: Let $f(x)$ be a continuous non-negative function in a close interval $[a, b]$. Then:

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

PROOF: Since integration give us not only a function but a family of them, we can define:

$$
\begin{gathered}
G(x)=\int_{a}^{x} f(t) d t \stackrel{\text { byFTCII }}{\Longrightarrow} G^{\prime}(x)=f(x) \\
\text { since } G^{\prime}(x)=f(x)=F^{\prime}(x) \text {, we have }(G(x)-F(x))^{\prime}=0
\end{gathered}
$$

INTEGRALS

FUNDAMENTAL THEOREM OF CALCULUS I

PROOF:

$$
\text { then } G(x)-F(x)=C
$$

INTEGRALS
 FUNDAMENTAL THEOREM OF CALCULUS I

PROOF:

$$
\text { then } G(x)-F(x)=C
$$

To evaluate C, we evaluate at $x=a$, since $G(a)=0$:

$$
C=-F(a)
$$

INTEGRALS

FUNDAMENTAL THEOREM OF CALCULUS I

PROOF:

$$
\text { then } G(x)-F(x)=C
$$

To evaluate C, we evaluate at $x=a$, since $G(a)=0$:

$$
C=-F(a)
$$

Then evaluate the function $G(x)$ at $x=b$ and use the value of C above:

$$
G(b)=F(b)-F(a) \Longleftrightarrow \int_{a}^{b} f(t) d t=F(b)-F(a)
$$

INTEGRALS

PROPERTIES

INDEFINITE AND DEFINITE INTEGRALS:

$$
\begin{gathered}
\int c f(x) d x=c \int f(x) d x \\
\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x
\end{gathered}
$$

INTEGRALS

PROPERTIES

DEFINITE INTEGRALS:

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x \\
& \int_{a}^{a} f(x) d x=0 \\
& \int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
\end{aligned}
$$

INTEGRALS

PROPERTIES

DEFINITE INTEGRALS:

$$
\begin{aligned}
& \frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) \text { and } \frac{d}{d x} \int_{x}^{b} f(t) d t=-f(x) \\
& \text { if } f(x) \geq g(x), \forall x \in[a, b] \Rightarrow \int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x \\
& \text { if } f(x) \leq 0, \forall x \in[a, b] \Rightarrow \int_{a}^{b} f(x) d x \leq 0 \\
&\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
\end{aligned}
$$

INTEGRALS

COMPUTATION

ANTIDERIVATIVE: Some integrals are easy to work out because they are just the opposite operation of the derivative.

$$
\begin{array}{rr}
\left.\int_{a}^{b} e^{x} d x=e^{x}\right]_{a}^{b}+c & \left.\int_{a}^{b} \frac{1}{x} d x=\ln x\right]_{a}^{b}+c \\
\left.\int_{a}^{b} \sin x d x=-\cos x\right]_{a}^{b}+c & \left.\int_{a}^{b} \cos x d x=\sin x\right]_{a}^{b}+c \\
\left.\int_{a}^{b} x^{n} d x=\frac{x^{n+1}}{n+1}\right]_{a}^{b}+c &
\end{array}
$$

INTEGRALS

COMPUTATION

SUBSTITUTION: Let $F(x)$ be a non-negative and differentiable function and $g(x)$ a differentiable function in a close interval $[a, b]$. Furthermore let $y=F(g(x))$, then by the chain rule:

INTEGRALS

COMPUTATION

SUBSTITUTION: Let $F(x)$ be a non-negative and differentiable function and $g(x)$ a differentiable function in a close interval $[a, b]$. Furthermore let $y=F(g(x))$, then by the chain rule:

$$
y^{\prime}=\frac{d F(g(x))}{d x}=F^{\prime}(g(x)) g^{\prime}(x)=f(g(x)) g^{\prime}(x)
$$

INTEGRALS

COMPUTATION

SUBSTITUTION: Let $F(x)$ be a non-negative and differentiable function and $g(x)$ a differentiable function in a close interval $[a, b]$. Furthermore let $y=F(g(x))$, then by the chain rule:

$$
y^{\prime}=\frac{d F(g(x))}{d x}=F^{\prime}(g(x)) g^{\prime}(x)=f(g(x)) g^{\prime}(x)
$$

Integrating:

$$
y=\int_{a}^{b} y^{\prime} d x=\int_{a}^{b} f(g(x)) g^{\prime}(x) d x
$$

INTEGRALS

COMPUTATION

Now let:

$$
\begin{aligned}
& u=g(x) \text { and } \\
& d u=g^{\prime}(x) d x
\end{aligned}
$$

INTEGRALS

COMPUTATION

Now let:

$$
\begin{aligned}
& u=g(x) \text { and } \\
& d u=g^{\prime}(x) d x
\end{aligned}
$$

Substituting these values into the integrand:

$$
\begin{aligned}
y=\int_{a}^{b} y^{\prime} d x & =\int_{a}^{b} f(\underbrace{g(x)}_{=u}) \underbrace{g^{\prime}(x) d x}_{=d u} \\
& =\int_{g(a)}^{g(b)} f(u) d u \\
& \left.=F(u)]_{g(a)}^{g(b)}=F(g(x))\right]_{a}^{b}+C
\end{aligned}
$$

INTEGRALS

COMPUTATION

Now let:

$$
\begin{aligned}
& u=g(x) \text { and } \\
& d u=g^{\prime}(x) d x
\end{aligned}
$$

Substituting these values into the integrand:

$$
\begin{aligned}
y=\int_{a}^{b} y^{\prime} d x & =\int_{a}^{b} f(\underbrace{g(x)}_{=u}) \underbrace{g^{\prime}(x) d x}_{=d u} \\
& =\int_{g(a)}^{g(b)} f(u) d u \\
& \left.=F(u)]_{g(a)}^{g(b)}=F(g(x))\right]_{a}^{b}+C
\end{aligned}
$$

INTEGRALS

COMPUTATION

Example:

$$
\begin{aligned}
& f(x)=\frac{\ln x}{x} \\
& F(x)=\int_{1}^{2} \frac{\ln x}{x} d x=\int_{1}^{2} \ln x \cdot \frac{1}{x} d x
\end{aligned}
$$

INTEGRALS

COMPUTATION

Example:

$$
\begin{aligned}
& f(x)=\frac{\ln x}{x} \\
& F(x)=\int_{1}^{2} \frac{\ln x}{x} d x=\int_{1}^{2} \ln x \cdot \frac{1}{x} d x
\end{aligned}
$$

Now let:

$$
\begin{aligned}
u & =\ln x \text { and } d u=\frac{1}{x} d x \\
u(1) & =\ln 1=0 \text { and } u(2)=\ln 2
\end{aligned}
$$

INTEGRALS

COMPUTATION

Example:

$$
\begin{aligned}
& f(x)=\frac{\ln x}{x} \\
& F(x)=\int_{1}^{2} \frac{\ln x}{x} d x=\int_{1}^{2} \ln x \cdot \frac{1}{x} d x
\end{aligned}
$$

Now let:

$$
\begin{aligned}
u & =\ln x \text { and } d u=\frac{1}{x} d x \\
u(1) & =\ln 1=0 \text { and } u(2)=\ln 2
\end{aligned}
$$

Substituting:

$$
F(x)=\int_{1}^{2} \ln x \frac{1}{x} d x=\int_{u(1)}^{u(2)} u d u=\left.\frac{u^{2}}{2}\right|_{0} ^{\ln 2}=\left.\frac{1}{2}(\ln x)^{2}\right|_{1} ^{2}+C
$$

INTEGRALS

COMPUTATION

BY PARTS: Let $f(x)$ and $g(x)$ be two non-negative and differentiable functions close interval $[a, b]$. Furthermore let $y=f(x) g(x)$, then by the product rule:

INTEGRALS

COMPUTATION

BY PARTS: Let $f(x)$ and $g(x)$ be two non-negative and differentiable functions close interval $[a, b]$. Furthermore let $y=f(x) g(x)$, then by the product rule:

$$
y^{\prime}=\frac{d}{d x} f(x) g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

INTEGRALS

COMPUTATION

BY PARTS: Let $f(x)$ and $g(x)$ be two non-negative and differentiable functions close interval $[a, b]$. Furthermore let $y=f(x) g(x)$, then by the product rule:

$$
y^{\prime}=\frac{d}{d x} f(x) g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Integrating:

$$
\int_{a}^{b} \frac{d}{d x} f(x) g(x) d x=\int_{a}^{b} f^{\prime}(x) g(x) d x+\int_{a}^{b} f(x) g^{\prime}(x) d x
$$

INTEGRALS

COMPUTATION

By the FTC II:

$$
f(x) g(x)]_{a}^{b}=\int_{a}^{b} f^{\prime}(x) g(x) d x+\int_{a}^{b} f(x) g^{\prime}(x) d x
$$

INTEGRALS

COMPUTATION

By the FTC II:

$$
f(x) g(x)]_{a}^{b}=\int_{a}^{b} f^{\prime}(x) g(x) d x+\int_{a}^{b} f(x) g^{\prime}(x) d x
$$

Solving for $\int f(x) g^{\prime}(x) d x$:

$$
\left.\int_{a}^{b} f(x) g^{\prime}(x) d x=f(x) g(x)\right]_{a}^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

INTEGRALS

COMPUTATION

By the FTC II:

$$
f(x) g(x)]_{a}^{b}=\int_{a}^{b} f^{\prime}(x) g(x) d x+\int_{a}^{b} f(x) g^{\prime}(x) d x
$$

Solving for $\int f(x) g^{\prime}(x) d x$:

$$
\left.\int_{a}^{b} f(x) g^{\prime}(x) d x=f(x) g(x)\right]_{a}^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

INTUITION: the main objective is to make $f(x)$ into something simpler, whilst letting $g(x)$ to remain in something similar or not more complicated.

INTEGRALS

COMPUTATION
Example: find the integral of the function $f(x)=x^{2} e^{x}$ in the interval [0, 1]

$$
F(x)=x^{2} e^{x} d x
$$

INTEGRALS

COMPUTATION
Example: find the integral of the function $f(x)=x^{2} e^{x}$ in the interval [0, 1]

$$
F(x)=x^{2} e^{x} d x
$$

Now let:

$$
\begin{aligned}
f(x) & =x^{2} \text { and } g^{\prime}(x)=e^{x} \text { then: } \\
f^{\prime}(x) & =2 x \text { and } g(x)=e^{x}
\end{aligned}
$$

INTEGRALS

COMPUTATION

Example: find the integral of the function $f(x)=x^{2} e^{x}$ in the interval $[0,1]$

$$
F(x)=x^{2} e^{x} d x
$$

Now let:

$$
\begin{aligned}
f(x) & =x^{2} \text { and } g^{\prime}(x)=e^{x} \text { then: } \\
f^{\prime}(x) & =2 x \text { and } g(x)=e^{x}
\end{aligned}
$$

Integrating by parts:

$$
\begin{aligned}
\int_{0}^{1} x^{2} e^{x} d x & \left.\left.\left.=x^{2} e^{x}\right]_{0}^{1}-\int_{0}^{1} 2 x e^{x} d x=x^{2} e^{x}\right]_{0}^{1}-2 x e^{x}\right]_{0}^{1}+2 \int_{0}^{1} e^{x} d x \\
& \left.=\left(x^{2}-2 x+2\right) e^{x}\right]_{0}^{1}=e-2
\end{aligned}
$$

INTEGRALS

OTHER TYPES

IMPROPER INTEGRALS: are integrals of the form:

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

INTEGRALS

OTHER TYPES

IMPROPER INTEGRALS: are integrals of the form:

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

In which one (or both) of the limits of integration is infinite and the integrand $f(x)$ is assumed to be continuous on the unbounded interval $a \leq x<\infty$.

INTEGRALS

OTHER TYPES

IMPROPER INTEGRALS: are integrals of the form:

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

In which one (or both) of the limits of integration is infinite and the integrand $f(x)$ is assumed to be continuous on the unbounded interval $a \leq x<\infty$.

INTEGRALS

OTHER TYPES

IMPROPER INTEGRALS: are integrals of the form:

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b} \int_{a}^{b} f(x) d x
$$

In which $f(x)$ becomes infinite as x approaches b

INTEGRALS

OTHER TYPES

IMPROPER INTEGRALS: can be:

- Convergent: if the improper integral tends to a finite number
- Divergent: if the improper integral tends to infinity

INTEGRALS

OTHER TYPES

IMPROPER INTEGRALS: can be:

- Convergent: if the improper integral tends to a finite number
- Divergent: if the improper integral tends to infinity

Examples: convergent integrals

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-x} d x=-\left[e^{-x}\right]_{0}^{\infty}=-\lim _{b \rightarrow \infty}\left[e^{-x}\right]_{0}^{b}=-0+1=1+C \\
& \int_{0}^{1} x^{-\frac{1}{2}} d x=2\left[x^{\frac{1}{2}}\right]_{0}^{1}=2[1-0]=2+C
\end{aligned}
$$

INTEGRALS

OTHER TYPES

Examples: divergent integrals

$$
\begin{array}{lc}
\int_{0}^{\infty} \frac{1}{x} d x & =\ln x]_{1}^{\infty}=\ln \infty-\ln 1=\infty-0=\infty \\
\int_{0}^{1} x^{-2} d x & =-\left[\frac{1}{x}\right]_{0}^{1}=-1+\lim _{x \rightarrow 0^{+}} \frac{1}{x}=-1+\infty=\infty
\end{array}
$$

Table of Contents

1. Limits

2. Continuity
3. Derivatives
4. Integrals
5. Power Series
6. Multivariate Calculus
7. Implicit Function Theorem
8. Convex and Concave Functions

POWER SERIES

POWER SERIES: they are series of the form:

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

POWER SERIES

POWER SERIES: they are series of the form:

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

where the coefficients of a_{n} are constants and x is a variable. Notice that power series are themselves functions ($f(x)$)

POWER SERIES

POWER SERIES: they are series of the form:

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

where the coefficients of a_{n} are constants and x is a variable. Notice that power series are themselves functions ($f(x)$)

Example:

$$
\sum x^{n}=1+x+x^{2}+x^{3}+\ldots=\frac{1}{1-x} \text { for } x<|1|
$$

POWER SERIES

As well as polynomials, that are finite, power series share some interesting characteristics. It can be said that within the radius of convergence:

- Power series are continuous
- Are differentiable
- Are integrable

POWER SERIES

TAYLOR'S RULE

TAYLOR POWER SERIES: we have seen that power series are functions in their own right, some of them with a close form solution, such as: $\sum x^{n}=\frac{1}{1-x}$.

POWER SERIES

TAYLOR'S RULE

TAYLOR POWER SERIES: we have seen that power series are functions in their own right, some of them with a close form solution, such as: $\sum x^{n}=\frac{1}{1-x}$.

We would like to know if when we encounter a function, it can be expressed in terms of a power series.

POWER SERIES

TAYLOR'S RULE

TAYLOR POWER SERIES: we have seen that power series are functions in their own right, some of them with a close form solution, such as: $\sum x^{n}=\frac{1}{1-x}$.

We would like to know if when we encounter a function, it can be expressed in terms of a power series.

It turns out that it is possible to do so within the radius of convergence.

POWER SERIES

TAYLOR'S RULE

TAYLOR POWER SERIES: we have seen that power series are functions in their own right, some of them with a close form solution, such as: $\sum x^{n}=\frac{1}{1-x}$.

We would like to know if when we encounter a function, it can be expressed in terms of a power series.

It turns out that it is possible to do so within the radius of convergence.

Look at the gif of $\ln (1+x)$ for some intuition

POWER SERIES

TAYLOR'S RULE

Assume we have any $f(x)$ and we would like to write in the form of a power series, i.e.

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

From this expression we can take infinitely many derivatives:

POWER SERIES

TAYLOR'S RULE

Assume we have any $f(x)$ and we would like to write in the form of a power series, i.e.

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

From this expression we can take infinitely many derivatives:

$$
f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots
$$

POWER SERIES

TAYLOR'S RULE

Assume we have any $f(x)$ and we would like to write in the form of a power series, i.e.

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

From this expression we can take infinitely many derivatives:

$$
\begin{aligned}
f^{\prime}(x) & =a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots \\
f^{\prime \prime}(x) & =2 a_{2}+3 \cdot 2 a_{3} x+4 \cdot 3 a_{4} x^{2} \ldots
\end{aligned}
$$

POWER SERIES

TAYLOR'S RULE

Assume we have any $f(x)$ and we would like to write in the form of a power series, i.e.

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

From this expression we can take infinitely many derivatives:

$$
\begin{aligned}
f^{\prime}(x) & =a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots \\
f^{\prime \prime}(x) & =2 a_{2}+3 \cdot 2 a_{3} x+4 \cdot 3 a_{4} x^{2} \ldots
\end{aligned}
$$

POWER SERIES

TAYLOR'S RULE

Assume we have any $f(x)$ and we would like to write in the form of a power series, i.e.

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

From this expression we can take infinitely many derivatives:

$$
\begin{aligned}
f^{\prime}(x) & =a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots \\
f^{\prime \prime}(x) & =2 a_{2}+3 \cdot 2 a_{3} x+4 \cdot 3 a_{4} x^{2} \ldots \\
\ldots & \\
f^{n}(x) & =n!a_{n}+\text { Terms containing } x \text { as a factor }
\end{aligned}
$$

POWER SERIES

TAYLOR'S RULE

Now notice that at $x=0$, the terms that share x as a factor cancel, so

POWER SERIES

TAYLOR'S RULE

Now notice that at $x=0$, the terms that share x as a factor cancel, so

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

POWER SERIES

TAYLOR'S RULE

Now notice that at $x=0$, the terms that share x as a factor cancel, so

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \quad \xrightarrow{\text { at } x=0} f(0)=a_{0} \quad \Rightarrow a_{0}=f(0)
$$

POWER SERIES

TAYLOR'S RULE

Now notice that at $x=0$, the terms that share x as a factor cancel, so

$$
\begin{aligned}
f(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
f^{\prime}(x) & =a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4}^{3} \ldots
\end{aligned}
$$

POWER SERIES

TAYLOR'S RULE

Now notice that at $x=0$, the terms that share x as a factor cancel, so

$$
\begin{aligned}
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots & \xrightarrow{\text { at } x=0} f(0)=a_{0} & \Rightarrow a_{0}=f(0) \\
f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4}^{3} \ldots & f^{\prime}(0)=a_{1} & \Rightarrow a_{1}=f^{\prime}(0)
\end{aligned}
$$

POWER SERIES

TAYLOR'S RULE

Now notice that at $x=0$, the terms that share x as a factor cancel, so

$$
\begin{aligned}
f(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots & \stackrel{\text { at } x=0}{ } f(0)=a_{0} & \Rightarrow a_{0}=f(0) \\
f^{\prime}(x) & =a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4}^{3} \ldots & f^{\prime}(0)=a_{1} & \Rightarrow a_{1}=f^{\prime}(0) \\
f^{\prime \prime}(x) & =2 a_{2}+3 \cdot 2 a_{3} x+4 \cdot 3 a_{4} x^{2} \ldots & &
\end{aligned}
$$

POWER SERIES

TAYLOR'S RULE

Now notice that at $x=0$, the terms that share x as a factor cancel, so

$$
\begin{array}{rrl}
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots & \xrightarrow{\text { at } x=0} f(0)=a_{0} & \Rightarrow a_{0}=f(0) \\
f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4}^{3} \ldots & f^{\prime}(0)=a_{1} & \Rightarrow a_{1}=f^{\prime}(0) \\
f^{\prime \prime}(x)=2 a_{2}+3 \cdot 2 a_{3} x+4 \cdot 3 a_{4} x^{2} \ldots & f^{\prime \prime}(0)=2 a_{2} & \Rightarrow a_{2}=\frac{1}{2} f^{\prime \prime}(0)
\end{array}
$$

POWER SERIES

TAYLOR'S RULE

Now notice that at $x=0$, the terms that share x as a factor cancel, so

$$
\begin{aligned}
& f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \quad \xrightarrow{\text { at } x=0} f(0)=a_{0} \quad \Rightarrow a_{0}=f(0) \\
& f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4}^{3} \ldots \quad f^{\prime}(0)=a_{1} \quad \Rightarrow a_{1}=f^{\prime}(0) \\
& f^{\prime \prime}(x)=2 a_{2}+3 \cdot 2 a_{3} x+4 \cdot 3 a_{4} x^{2} \ldots \quad f^{\prime \prime}(0)=2 a_{2} \quad \Rightarrow a_{2}=\frac{1}{2} f^{\prime \prime}(0) \\
& f^{3}(x)=3 \cdot 2 a_{3}+4 \cdot 3 \cdot 2 a_{4} x+\ldots
\end{aligned}
$$

POWER SERIES

TAYLOR'S RULE

Now notice that at $x=0$, the terms that share x as a factor cancel, so

$$
\begin{array}{rlrl}
f(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots & \xrightarrow{\text { at } x=0} f(0)=a_{0} & \Rightarrow a_{0}=f(0) \\
f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4}^{3} \ldots & f^{\prime}(0)=a_{1} & \Rightarrow a_{1}=f^{\prime}(0) \\
f^{\prime \prime}(x) & =2 a_{2}+3 \cdot 2 a_{3} x+4 \cdot 3 a_{4} x^{2} \ldots & f^{\prime \prime}(0)=2 a_{2} & \Rightarrow a_{2}=\frac{1}{2} f^{\prime \prime}(0) \\
f^{3}(x) & =3 \cdot 2 a_{3}+4 \cdot 3 \cdot 2 a_{4} x+\ldots & f^{3}(0)=3!a_{3} & \Rightarrow a_{3}=\frac{1}{3!} f^{\prime \prime}(0) \\
\ldots & & \\
f^{n}(x) & =n!a_{n}+\text { Terms containing } x & &
\end{array}
$$

POWER SERIES

TAYLOR'S RULE

Now notice that at $x=0$, the terms that share x as a factor cancel, so

$$
\begin{array}{crl}
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots & \stackrel{\text { at } x=0}{ } f(0)=a_{0} & \Rightarrow a_{0}=f(0) \\
f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4}^{3} \ldots & f^{\prime}(0)=a_{1} & \Rightarrow a_{1}=f^{\prime}(0) \\
f^{\prime \prime}(x)=2 a_{2}+3 \cdot 2 a_{3} x+4 \cdot 3 a_{4} x^{2} \ldots & f^{\prime \prime}(0)=2 a_{2} & \Rightarrow a_{2}=\frac{1}{2} f^{\prime \prime}(0) \\
f^{3}(x)=3 \cdot 2 a_{3}+4 \cdot 3 \cdot 2 a_{4} x+\ldots & f^{3}(0)=3!a_{3} & \Rightarrow a_{3}=\frac{1}{3!} f^{\prime \prime}(0) \\
\ldots & & \\
f^{n}(x)=n!a_{n}+\text { Terms containing } x & f^{n}(0)=n!a_{n} & \Rightarrow a_{n}=\frac{1}{n!} f^{n}(0)
\end{array}
$$

POWER SERIES

TAYLOR'S RULE

Substituting back into the original equation:

$$
\begin{aligned}
f(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{3}(0)}{3!} x^{3}+\ldots+\frac{f^{n}(0)}{n!} x^{n}+\ldots \\
& =\sum_{n=0}^{\infty} \frac{f^{n}(0)}{n!} x^{n}
\end{aligned}
$$

POWER SERIES

TAYLOR'S RULE

Example: take $\ln (1+x)$

POWER SERIES

TAYLOR'S RULE

Example: take $\ln (1+x)$
We would like to expand $\ln (1+x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, but write it in sum notation, then

POWER SERIES

TAYLOR'S RULE

Example: take $\ln (1+x)$
We would like to expand $\ln (1+x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, but write it in sum notation, then

$$
f(0)=\ln 1=0
$$

POWER SERIES

TAYLOR'S RULE

Example: take $\ln (1+x)$
We would like to expand $\ln (1+x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, but write it in sum notation, then

$$
f(0)=\ln 1=0 \quad \Rightarrow a_{0}=0
$$

POWER SERIES

TAYLOR'S RULE

Example: take $\ln (1+x)$
We would like to expand $\ln (1+x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, but write it in sum notation, then

$$
\begin{array}{ll}
f(0)=\ln 1=0 & \Rightarrow a_{0}=0 \\
f^{\prime}(0)=\left.\frac{1}{1+x}\right|_{x=0}=1 &
\end{array}
$$

POWER SERIES

TAYLOR'S RULE

Example: take $\ln (1+x)$
We would like to expand $\ln (1+x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, but write it in sum notation, then

$$
\begin{array}{ll}
f(0)=\ln 1=0 & \Rightarrow a_{0}=0 \\
f^{\prime}(0)=\left.\frac{1}{1+x}\right|_{x=0}=1 & \Rightarrow a_{1}=1
\end{array}
$$

POWER SERIES

TAYLOR'S RULE

Example: take $\ln (1+x)$
We would like to expand $\ln (1+x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, but write it in sum notation, then

$$
\begin{array}{ll}
f(0)=\ln 1=0 & \Rightarrow a_{0}=0 \\
f^{\prime}(0)=\left.\frac{1}{1+x}\right|_{x=0}=1 & \Rightarrow a_{1}=1 \\
f^{\prime \prime}(0)=\left.\frac{-1}{(1+x)^{2}}\right|_{x=0}=-1 &
\end{array}
$$

POWER SERIES

TAYLOR'S RULE

Example: take $\ln (1+x)$
We would like to expand $\ln (1+x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, but write it in sum notation, then

$$
\begin{array}{ll}
f(0)=\ln 1=0 & \Rightarrow a_{0}=0 \\
f^{\prime}(0)=\left.\frac{1}{1+x}\right|_{x=0}=1 & \Rightarrow a_{1}=1 \\
f^{\prime \prime}(0)=\left.\frac{-1}{(1+x)^{2}}\right|_{x=0}=-1 & \Rightarrow a_{2}=-\frac{1}{2}
\end{array}
$$

POWER SERIES

TAYLOR'S RULE

Example: take $\ln (1+x)$
We would like to expand $\ln (1+x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, but write it in sum notation, then

$$
\begin{array}{ll}
f(0)=\ln 1=0 & \Rightarrow a_{0}=0 \\
f^{\prime}(0)=\left.\frac{1}{1+x}\right|_{x=0}=1 & \Rightarrow a_{1}=1 \\
f^{\prime \prime}(0)=\left.\frac{-1}{(1+x)^{2}}\right|_{x=0}=-1 & \Rightarrow a_{2}=-\frac{1}{2} \\
f^{3}(0)=\left.\frac{-2}{(1+x)^{3}}\right|_{x=0}=-2 &
\end{array}
$$

POWER SERIES

TAYLOR'S RULE

Example: take $\ln (1+x)$
We would like to expand $\ln (1+x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, but write it in sum notation, then

$$
\begin{array}{ll}
f(0)=\ln 1=0 & \Rightarrow a_{0}=0 \\
f^{\prime}(0)=\left.\frac{1}{1+x}\right|_{x=0}=1 & \Rightarrow a_{1}=1 \\
f^{\prime \prime}(0)=\left.\frac{-1}{(1+x)^{2}}\right|_{x=0}=-1 & \Rightarrow a_{2}=-\frac{1}{2} \\
f^{3}(0)=\left.\frac{-2}{(1+x)^{3}}\right|_{x=0}=-2 & \Rightarrow a_{3}=\frac{1}{3}
\end{array}
$$

POWER SERIES

TAYLOR'S RULE

Example: take $\ln (1+x)$
We would like to expand $\ln (1+x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, but write it in sum notation, then

$$
\begin{array}{ll}
f(0)=\ln 1=0 & \Rightarrow a_{0}=0 \\
f^{\prime}(0)=\left.\frac{1}{1+x}\right|_{x=0}=1 & \Rightarrow a_{1}=1 \\
f^{\prime \prime}(0)=\left.\frac{-1}{(1+x)^{2}}\right|_{x=0}=-1 & \Rightarrow a_{2}=-\frac{1}{2} \\
f^{3}(0)=\left.\frac{-2}{(1+x)^{3}}\right|_{x=0}=-2 & \Rightarrow a_{3}=\frac{1}{3}
\end{array}
$$

POWER SERIES

TAYLOR'S RULE

Example: take $\ln (1+x)$
We would like to expand $\ln (1+x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, but write it in sum notation, then

$$
\begin{aligned}
& f(0)=\ln 1=0 \\
& f^{\prime}(0)=\left.\frac{1}{1+x}\right|_{x=0}=1 \\
& \Rightarrow a_{0}=0 \\
& f^{\prime \prime}(0)=\left.\frac{-1}{(1+x)^{2}}\right|_{x=0}=-1 \\
& \Rightarrow a_{2}=-\frac{1}{2} \\
& f^{3}(0)=\left.\frac{-2}{(1+x)^{3}}\right|_{x=0}=-2 \\
& \Rightarrow a_{3}=\frac{1}{3} \\
& f^{n}(0)=\left.(-1)^{n-1} \frac{(n-1)!}{(1+x)^{n}}\right|_{x=0}=(-1)^{n-1}(n-1)!
\end{aligned}
$$

POWER SERIES

TAYLOR'S RULE

Example: take $\ln (1+x)$
We would like to expand $\ln (1+x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, but write it in sum notation, then

$$
\begin{aligned}
f(0)=\ln 1=0 & \Rightarrow a_{0}=0 \\
f^{\prime}(0)=\left.\frac{1}{1+x}\right|_{x=0}=1 & \Rightarrow a_{1}=1 \\
f^{\prime \prime}(0)=\left.\frac{-1}{(1+x)^{2}}\right|_{x=0}=-1 & \Rightarrow a_{2}=-\frac{1}{2} \\
f^{3}(0)=\left.\frac{-2}{(1+x)^{3}}\right|_{x=0}=-2 & \Rightarrow a_{3}=\frac{1}{3} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots ~ & \\
f^{n}(0)=\left.(-1)^{n-1} \frac{(n-1)!}{(1+x)^{n}}\right|_{x=0}=(-1)^{n-1}(n-1)! & \Rightarrow a_{n}=(-1)^{n-1} \frac{1}{n}
\end{aligned}
$$

POWER SERIES

TAYLOR'S RULE

Example: $\ln (1+x)$
Substituting back into Taylor's formula:

$$
\begin{aligned}
\ln (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots+(-1)^{n} \frac{x^{n+1}}{n+1} \\
& =\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}
\end{aligned}
$$

Look at the gif for $\ln (1+x)$

Table of Contents

1. Limits

2. Continuity
3. Derivatives
4. Integrals
5. Power Series
6. Multivariate Calculus
7. Implicit Function Theorem
8. Convex and Concave Functions

MULTIVARIATE CALCULUS

INTRODUCTION

Many functions do not depend only on one variable but in an undefined number of them, e.g.:

$$
z=f(x, y)
$$

MULTIVARIATE CALCULUS

INTRODUCTION

Many functions do not depend only on one variable but in an undefined number of them, e.g.:

$$
z=f(x, y)
$$

Is a function that depends only on x and y. Of course a function might have any number of variables:

$$
z=f(\mathbf{x})=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

MULTIVARIATE CALCULUS

INTRODUCTION

Many functions do not depend only on one variable but in an undefined number of them, e.g.:

$$
z=f(x, y)
$$

Is a function that depends only on x and y. Of course a function might have any number of variables:

$$
z=f(\mathbf{x})=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

This specific arrange of variables is called a vector. As such, we can define bold \mathbf{x} as this vector, hence:

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

MULTIVARIATE CALCULUS

DOMAIN

DOMAIN: the domain is all the points $P=\left(x_{1_{0}}, x_{2_{0}}, \ldots, x_{n_{0}}\right)$ in the n-dimensional space for which the function $z=f(\mathbf{x})$ is defined

MULTIVARIATE CALCULUS

DOMAIN

DOMAIN: the domain is all the points $P=\left(x_{1_{0}}, x_{2_{0}}, \ldots, x_{n_{0}}\right)$ in the n-dimensional space for which the function $z=f(\mathbf{x})$ is defined

Example 1:

$$
z=f(x, y)=\frac{1}{x-y}
$$

MULTIVARIATE CALCULUS

DOMAIN

DOMAIN: the domain is all the points $P=\left(x_{1_{0}}, x_{2_{0}}, \ldots, x_{n_{0}}\right)$ in the n-dimensional space for which the function $z=f(\mathbf{x})$ is defined

Example 1:

$$
z=f(x, y)=\frac{1}{x-y}
$$

This function is not defined for all values where $x=y$

MULTIVARIATE CALCULUS

DOMAIN

DOMAIN: the domain is all the points $P=\left(x_{1_{0}}, x_{2_{0}}, \ldots, x_{n_{0}}\right)$ in the n-dimensional space for which the function $z=f(\mathbf{x})$ is defined

Example 1:

$$
z=f(x, y)=\frac{1}{x-y}
$$

This function is not defined for all values where $x=y$
Example 2:

$$
w=g(\mathbf{x})=\sqrt{9-x^{2}-y^{2}}
$$

MULTIVARIATE CALCULUS

DOMAIN

DOMAIN: the domain is all the points $P=\left(x_{1_{0}}, x_{2_{0}}, \ldots, x_{n_{0}}\right)$ in the n-dimensional space for which the function $z=f(\mathbf{x})$ is defined

Example 1:

$$
z=f(x, y)=\frac{1}{x-y}
$$

This function is not defined for all values where $x=y$
Example 2:

$$
w=g(\mathbf{x})=\sqrt{9-x^{2}-y^{2}}
$$

This function is not define for all values where $x^{2}+y^{2} \geq 9$

MULTIVARIATE CALCULUS

LEVEL CURVES
LEVEL CURVE: is the reflected line over the $x y$-plane where the function takes the same value:

$$
z=f(x, y)=c
$$

MULTIVARIATE CALCULUS

LEVEL CURVES

LEVEL CURVE: is the reflected line over the $x y$-plane where the function takes the same value:

$$
z=f(x, y)=c
$$

The collection of level curves is called the contour-map

MULTIVARIATE CALCULUS

PARTIAL DERIVATIVES

PARTIAL DERIVATIVE: is the derivative of a multivariate function w.r.t. one of its variables. The key idea is to allow one variable change while keeping the rest constant:

MULTIVARIATE CALCULUS

PARTIAL DERIVATIVES

PARTIAL DERIVATIVE: is the derivative of a multivariate function w.r.t. one of its variables. The key idea is to allow one variable change while keeping the rest constant:

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}=f_{x}(x, y) \\
& \frac{\partial z}{\partial y}=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}=f_{y}(x, y)
\end{aligned}
$$

MULTIVARIATE CALCULUS

PARTIAL DERIVATIVES

PARTIAL DERIVATIVE: is the derivative of a multivariate function w.r.t. one of its variables. The key idea is to allow one variable change while keeping the rest constant:

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}=f_{x}(x, y) \\
& \frac{\partial z}{\partial y}=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}=f_{y}(x, y)
\end{aligned}
$$

And in general:

$$
\frac{\partial z}{\partial x_{i}}=\lim _{\Delta x_{i} \rightarrow 0} \frac{f\left(x_{i}+\Delta x_{i}, \mathbf{x}_{-i}\right)-f(\mathbf{x})}{\Delta x_{i}}=f_{x_{i}}(\mathbf{x})
$$

Where \mathbf{x}_{-i} are all other variables different from x_{i}

MULTIVARIATE CALCULUS

PARTIAL DERIVATIVES

Example:

MULTIVARIATE CALCULUS

PARTIAL DERIVATIVES

Example:

$$
f(x, y)=x^{4}+3 x^{2} y^{3}-\ln \left(2 x^{2} y\right)
$$

MULTIVARIATE CALCULUS

PARTIAL DERIVATIVES

Example:

$$
\begin{aligned}
f(x, y) & =x^{4}+3 x^{2} y^{3}-\ln \left(2 x^{2} y\right) \\
f_{x} & =4 x^{3}+6 x y^{3}-\frac{2}{x}
\end{aligned}
$$

MULTIVARIATE CALCULUS

PARTIAL DERIVATIVES

Example:

$$
\begin{aligned}
f(x, y) & =x^{4}+3 x^{2} y^{3}-\ln \left(2 x^{2} y\right) \\
f_{x} & =4 x^{3}+6 x y^{3}-\frac{2}{x} \\
f_{y} & =9 x^{2} y^{2}-\frac{1}{y}
\end{aligned}
$$

MULTIVARIATE CALCULUS

PARTIAL DERIVATIVES

Example:

$$
\begin{aligned}
f(x, y) & =x^{4}+3 x^{2} y^{3}-\ln \left(2 x^{2} y\right) \\
f_{x} & =4 x^{3}+6 x y^{3}-\frac{2}{x} \\
f_{y} & =9 x^{2} y^{2}-\frac{1}{y}
\end{aligned}
$$

NOTATION: $\frac{\partial z}{\partial x}$ this limit (if it exist) is the partial derivative of z w.r.t.
x. The most common notations are:

$$
\frac{\partial z}{\partial x}, \quad z_{x}, \quad \frac{\partial f}{\partial x}, \quad f_{x}, \quad f_{x}(x, y)
$$

MULTIVARIATE CALCULUS

PARTIAL DERIVATIVES

As with functions of one variable, multivariate functions are functions on their own right and we can expect to have second order partial derivatives w.r.t. x :

MULTIVARIATE CALCULUS

PARTIAL DERIVATIVES

As with functions of one variable, multivariate functions are functions on their own right and we can expect to have second order partial derivatives w.r.t. x :

$$
\begin{array}{cr}
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=f_{x x} & \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x \partial y}=f_{y x} \\
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y \partial x}=f_{x y} & \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=f_{y y}
\end{array}
$$

MULTIVARIATE CALCULUS

PARTIAL DERIVATIVES

As with functions of one variable, multivariate functions are functions on their own right and we can expect to have second order partial derivatives w.r.t. x :

$$
\begin{array}{cr}
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=f_{x x} & \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x \partial y}=f_{y x} \\
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y \partial x}=f_{x y} & \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=f_{y y}
\end{array}
$$

More interestingly, usually $f_{x y}=f_{y x}$

MULTIVARIATE CALCULUS

PARTIAL DERIVATIVES

As with functions of one variable, multivariate functions are functions on their own right and we can expect to have second order partial derivatives w.r.t. x :

$$
\begin{array}{cr}
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=f_{x x} & \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x \partial y}=f_{y x} \\
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y \partial x}=f_{x y} & \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=f_{y y}
\end{array}
$$

More interestingly, usually $f_{x y}=f_{y x}$ Example:

$$
\begin{array}{ll}
f_{x}=4 x^{3}+6 x y^{3}-\frac{2}{x} & f_{y x}=18 x y^{2} \\
f_{y}=9 x^{2} y^{2}-\frac{1}{y} & f_{x y}=18 x y^{2}
\end{array}
$$

MULTIVARIATE CALCULUS

TANGENT PLANE

TANGENT PLANE: The

 concept of tangent plane to a surface corresponds to the concept of tangent line to a curve. So the tangent plane of a surface at a point is the plane that "best approximates" the surface at that point.

Figure: Tangent plane

Tangent line Tangent plane

$$
\begin{array}{rl}
m\left(x-x_{0}\right)+\left(y-y_{0}\right)=0 & a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+\left(z-z_{0}\right)=0 \\
f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\left(f(x)-f\left(x_{0}\right)\right)=0 & f_{x}\left(x-x_{0}\right)+f_{y}\left(y-y_{0}\right)+\left(f(x, y)-f\left(x_{0}, y_{0}\right)\right)=0
\end{array}
$$

Table of Contents

1. Limits

2. Continuity
3. Derivatives
4. Integrals
5. Power Series
6. Multivariate Calculus
7. Implicit Function Theorem
8. Convex and Concave Functions

IMPLICIT FUNCTION THEOREM

CHAIN RULE

Let $w=f(x, y)$ be a differentiable function in a closed interval. Let also $x=g(t)$ and $y=h(t)$ be continuous functions in the same interval. Then

IMPLICIT FUNCTION THEOREM

CHAIN RULE

Let $w=f(x, y)$ be a differentiable function in a closed interval. Let also $x=g(t)$ and $y=h(t)$ be continuous functions in the same interval. Then

$$
\frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}
$$

IMPLICIT FUNCTION THEOREM

CHAIN RULE

Let $w=f(x, y)$ be a differentiable function in a closed interval. Let also $x=g(t)$ and $y=h(t)$ be continuous functions in the same interval. Then

$$
\frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}
$$

And in general for $w=f(\mathbf{x})$:

IMPLICIT FUNCTION THEOREM

CHAIN RULE

Let $w=f(x, y)$ be a differentiable function in a closed interval. Let also $x=g(t)$ and $y=h(t)$ be continuous functions in the same interval. Then

$$
\frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}
$$

And in general for $w=f(\mathbf{x})$:

$$
\frac{\partial f(\mathbf{x})}{\partial t}=\frac{\partial f(\mathbf{x})}{\partial x_{1}} \frac{\partial x_{1}}{\partial t}+\ldots+\frac{\partial f(\mathbf{x})}{\partial x_{n}} \frac{\partial x_{n}}{\partial t}
$$

IMPLICIT FUNCTION THEOREM

THEOREM

THEOREM: Let $F(x, y)$ have continuous partial derivatives throughout some neighbourhood of a point (x_{0}, y_{0}), assume also that $F\left(x_{0}, y_{0}\right)=c$ and $F_{y}\left(x_{0}, y_{0}\right) \neq 0$. Then there is an interval I about x_{0} with the property that there exists exactly one differentiable function $y=f(x)$ defined on I such that $y_{0}=f\left(x_{0}\right)$ and:

$$
F[x, f(x)]=c
$$

Further, the derivative of this function is given by the formula

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}
$$

and is therefore continuous.

IMPLICIT FUNCTION THEOREM

THEOREM

Proof: for the second statement

IMPLICIT FUNCTION THEOREM

THEOREM

Proof: for the second statement
Differentiate $F[x, f(x)]=c$ w.r.t x using the chain rule

$$
\frac{\partial F[x, f(x)]}{\partial x}=F_{x}+F_{y} \frac{\partial y}{\partial x}=0
$$

IMPLICIT FUNCTION THEOREM

THEOREM

Proof: for the second statement
Differentiate $F[x, f(x)]=c$ w.r.t x using the chain rule

$$
\frac{\partial F[x, f(x)]}{\partial x}=F_{x}+F_{y} \frac{\partial y}{\partial x}=0
$$

Solving for $\frac{\partial y}{\partial x}$ the result follows

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}
$$

IMPLICIT FUNCTION THEOREM

THEOREM

Example: consider $F(x, y)=x^{2} y^{5}-2 x y+1=0$

IMPLICIT FUNCTION THEOREM

THEOREM

Example: consider $F(x, y)=x^{2} y^{5}-2 x y+1=0$
Taking the partial derivatives

$$
\begin{array}{r}
F_{x}(x, y)=2 x y^{5}-2 y \\
F_{y}(x, y)=5 x^{2} y^{4}-2 x
\end{array}
$$

IMPLICIT FUNCTION THEOREM

THEOREM

Example: consider $F(x, y)=x^{2} y^{5}-2 x y+1=0$
Taking the partial derivatives

$$
\begin{gathered}
F_{x}(x, y)=2 x y^{5}-2 y \\
F_{y}(x, y)=5 x^{2} y^{4}-2 x
\end{gathered}
$$

Then

$$
\frac{\partial y}{\partial x}=-\frac{F_{x}}{F_{y}}=-\frac{2 x y^{5}-2 y}{5 x^{2} y^{4}-2 x}
$$

Table of Contents

```
1. Limits
2. Continuity
3. Derivatives
4. Integrals
5. Power Series
6. Multivariate Calculus
7. Implicit Function Theorem
8. Convex and Concave Functions
```


CONVEX AND CONCAVE FUNCTIONS

INTUITION

CONCAVE FUNCTION: is a function where no line segment joining two points on the graph lies above the graph at any point.

CONVEX AND CONCAVE FUNCTIONS

DEFINITION

DEFINITION: Let $f(x)$ be a function defined on the interval I. Then $f(x)$ is said to be concave if $\forall a, b \in I$, and $\forall \lambda \in[0,1]$ we have:

$$
f((1-\lambda) a+\lambda b) \geq(1-\lambda) f(a)+\lambda f(b)
$$

where $x *=(1-\lambda) a+\lambda b$

CONVEX AND CONCAVE FUNCTIONS

INTUITION

CONVEX FUNCTION: is a function where no line segment joining two points on the graph lies below the graph at any point.

DEFINITION: Let $f(x)$ be a function defined on the interval I. Then $f(x)$ is said to be convex if $\forall a, b \in I$, and $\forall \lambda \in[0,1]$ we have:

$$
f((1-\lambda) a+\lambda b) \leq(1-\lambda) f(a)+\lambda f(b)
$$

CONVEX AND CONCAVE FUNCTIONS

JENSEN'S INEQUALITY

A function $f(x)$ of a single variable defined on the interval I is concave if and only if $\forall n \geq 2$:

$$
\begin{aligned}
& f\left(\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n}\right) \geq \lambda_{1} f\left(x_{1}\right)+\ldots+\lambda_{n} f\left(x_{n}\right) \\
& \forall x_{1}, \ldots, x_{n} \in I \text { and } \forall \lambda_{1}, \ldots, \lambda_{n} \geq 0 \mid \sum_{i=1}^{n} \lambda_{i}=1
\end{aligned}
$$

A function $f(x)$ of a single variable defined on the interval I is convex if and only if $\forall n \geq 2$:

$$
\begin{aligned}
& f\left(\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n}\right) \leq \lambda_{1} f\left(x_{1}\right)+\ldots+\lambda_{n} f\left(x_{n}\right) \\
& \forall x_{1}, \ldots, x_{n} \in I \text { and } \forall \lambda_{1}, \ldots, \lambda_{n} \geq 0 \mid \sum_{i=1}^{n} \lambda_{i}=1
\end{aligned}
$$

CONVEX AND CONCAVE FUNCTIONS

DIFFERENTIABLE FUNCTIONS

DEFINITION: The differentiable function $f(x)$ of a single variable defined on an open interval I is concave on I if and only if:

$$
f(x)-f\left(x^{*}\right) \leq f^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)
$$

INTUITION: The graph of the function $f(x)$ lies below the the any tangent line

CONVEX AND CONCAVE FUNCTIONS

DIFFERENTIABLE FUNCTIONS

DEFINITION: The differentiable function $f(x)$ of a single variable defined on an open interval I is convex on I if and only if:

$$
f(x)-f\left(x^{*}\right) \geq f^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)
$$

INTUITION: The graph of the function $f(x)$ lies above the the any tangent line

CONVEX AND CONCAVE FUNCTIONS

DIFFERENTIABLE FUNCTIONS

DEFINITION: The differentiable function $f(x)$ of a single variable defined on an open interval I is convex on I if and only if:

$$
f(x)-f\left(x^{*}\right) \geq f^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)
$$

INTUITION: The graph of the function $f(x)$ lies above the the any tangent line

Play with this graph

CONVEX AND CONCAVE FUNCTIONS

TWICE-DIFFERENTIABLE FUNCTIONS

PROPOSITION: A twice-differentiable function $f(x)$ of a single variable defined on the interval I is:

- Concave: if and only if $f^{\prime \prime}(x) \leq 0$ for all x in the interior of I
- Convex: if and only if $f^{\prime \prime}(x) \geq 0$ for all x in the interior of I

INTUITION: For a concave (convex) function, the slope of the tangent line to a point becomes lesser as we move along the x-axis

